一种可扩展并行流体模拟的schur补体预调节器

Jieyu Chu, Nafees Bin Zafar, Xubo Yang
{"title":"一种可扩展并行流体模拟的schur补体预调节器","authors":"Jieyu Chu, Nafees Bin Zafar, Xubo Yang","doi":"10.1145/3072959.3126843","DOIUrl":null,"url":null,"abstract":"We present an algorithmically efficient and parallelized domain decomposition based approach to solving Poisson’s equation on irregular domains. Our technique employs the Schur complement method, which permits a high degree of parallel efficiency on multicore systems. We create a novel Schur complement preconditioner which achieves faster convergence, and requires less computation time and memory. This domain decomposition method allows us to apply different linear solvers for different regions of the flow. Subdomains with regular boundaries can be solved with an FFT-based Fast Poisson Solver. We can solve systems with 1,0243 degrees of freedom, and demonstrate its use for the pressure projection step of incompressible liquid and gas simulations. The results demonstrate considerable speedup over preconditioned conjugate gradient methods commonly employed to solve such problems, including a multigrid preconditioned conjugate gradient method.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A schur complement preconditioner for scalable parallel fluid simulation\",\"authors\":\"Jieyu Chu, Nafees Bin Zafar, Xubo Yang\",\"doi\":\"10.1145/3072959.3126843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithmically efficient and parallelized domain decomposition based approach to solving Poisson’s equation on irregular domains. Our technique employs the Schur complement method, which permits a high degree of parallel efficiency on multicore systems. We create a novel Schur complement preconditioner which achieves faster convergence, and requires less computation time and memory. This domain decomposition method allows us to apply different linear solvers for different regions of the flow. Subdomains with regular boundaries can be solved with an FFT-based Fast Poisson Solver. We can solve systems with 1,0243 degrees of freedom, and demonstrate its use for the pressure projection step of incompressible liquid and gas simulations. The results demonstrate considerable speedup over preconditioned conjugate gradient methods commonly employed to solve such problems, including a multigrid preconditioned conjugate gradient method.\",\"PeriodicalId\":7121,\"journal\":{\"name\":\"ACM Trans. Graph.\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Graph.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3072959.3126843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3072959.3126843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出了一种求解不规则域上泊松方程的高效并行域分解方法。我们的技术采用舒尔补方法,它允许在多核系统上的高度并行效率。提出了一种新颖的舒尔补预条件,收敛速度快,计算时间短,占用内存少。这种区域分解方法允许我们对流动的不同区域应用不同的线性求解器。具有规则边界的子域可以用基于fft的快速泊松求解器求解。我们可以求解具有10243自由度的系统,并演示了它在不可压缩液体和气体模拟的压力投影步骤中的应用。结果表明,与通常用于解决此类问题的预条件共轭梯度方法(包括多网格预条件共轭梯度方法)相比,该方法具有相当大的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A schur complement preconditioner for scalable parallel fluid simulation
We present an algorithmically efficient and parallelized domain decomposition based approach to solving Poisson’s equation on irregular domains. Our technique employs the Schur complement method, which permits a high degree of parallel efficiency on multicore systems. We create a novel Schur complement preconditioner which achieves faster convergence, and requires less computation time and memory. This domain decomposition method allows us to apply different linear solvers for different regions of the flow. Subdomains with regular boundaries can be solved with an FFT-based Fast Poisson Solver. We can solve systems with 1,0243 degrees of freedom, and demonstrate its use for the pressure projection step of incompressible liquid and gas simulations. The results demonstrate considerable speedup over preconditioned conjugate gradient methods commonly employed to solve such problems, including a multigrid preconditioned conjugate gradient method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信