二值数列相对于等差数列分布的不规则性,II(构造界)

Cécile Dartyge, Katalin Gyarmati, A. Sárközy
{"title":"二值数列相对于等差数列分布的不规则性,II(构造界)","authors":"Cécile Dartyge, Katalin Gyarmati, A. Sárközy","doi":"10.2478/udt-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract In Part I of this paper we studied the irregularities of distribution of binary sequences relative to short arithmetic progressions. First we introduced a quantitative measure for this property. Then we studied the typical and minimal values of this measure for binary sequences of a given length. In this paper our goal is to give constructive bounds for these minimal values.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"76 1","pages":"1 - 21"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, II (Constructive Bounds)\",\"authors\":\"Cécile Dartyge, Katalin Gyarmati, A. Sárközy\",\"doi\":\"10.2478/udt-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In Part I of this paper we studied the irregularities of distribution of binary sequences relative to short arithmetic progressions. First we introduced a quantitative measure for this property. Then we studied the typical and minimal values of this measure for binary sequences of a given length. In this paper our goal is to give constructive bounds for these minimal values.\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"76 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文第一部分研究了二值数列相对于短等差数列分布的不规则性。首先,我们介绍了这个性质的定量度量。然后对给定长度的二值序列研究了该测度的典型值和最小值。在本文中,我们的目标是给出这些极小值的建设性界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Irregularities of Distribution of Binary Sequences Relative to Arithmetic Progressions, II (Constructive Bounds)
Abstract In Part I of this paper we studied the irregularities of distribution of binary sequences relative to short arithmetic progressions. First we introduced a quantitative measure for this property. Then we studied the typical and minimal values of this measure for binary sequences of a given length. In this paper our goal is to give constructive bounds for these minimal values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信