具有能量临界指数的聚集-扩散方程

IF 1.3 4区 数学 Q2 MATHEMATICS, APPLIED
S. Bian
{"title":"具有能量临界指数的聚集-扩散方程","authors":"S. Bian","doi":"10.3934/dcdsb.2023126","DOIUrl":null,"url":null,"abstract":"We consider a Keller-Segel model with non-linear porous medium type diffusion and nonlocal attractive power law interaction, focusing on potentials that are less singular than Newtonian interaction. Here, the nonlinear diffusion is chosen to be $m=\\frac{2d}{d+2s}$ in such a way that the associated free energy is conformal invariant and there is a family of stationary solutions $U(x)=c\\left(\\frac{\\lambda}{\\lambda^2+|x-x_0|^2}\\right)^{\\frac{d+2s}{2}}$ for any constant $c$ and some $\\lambda>0, x_0 \\in \\R^d.$ We analyze under which conditions on the initial data the regime that attractive forces are stronger than diffusion occurs and classify the global existence and finite time blow-up of dynamical solutions by virtue of stationary solutions. Precisely, solutions exist globally in time if the $L^m$ norm of the initial data $\\|u_0\\|_{L^m(\\R^d)}$ is less than the $L^m$ norm of stationary solutions $\\|U(x)\\|_{L^m(\\R^d)}$. Whereas there are blowing-up solutions for $\\|u_0\\|_{L^m(\\R^d)}>\\|U(x)\\|_{L^m(\\R^d)}$.","PeriodicalId":51015,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series B","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The aggregation-diffusion equation with energy critical exponent\",\"authors\":\"S. Bian\",\"doi\":\"10.3934/dcdsb.2023126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a Keller-Segel model with non-linear porous medium type diffusion and nonlocal attractive power law interaction, focusing on potentials that are less singular than Newtonian interaction. Here, the nonlinear diffusion is chosen to be $m=\\\\frac{2d}{d+2s}$ in such a way that the associated free energy is conformal invariant and there is a family of stationary solutions $U(x)=c\\\\left(\\\\frac{\\\\lambda}{\\\\lambda^2+|x-x_0|^2}\\\\right)^{\\\\frac{d+2s}{2}}$ for any constant $c$ and some $\\\\lambda>0, x_0 \\\\in \\\\R^d.$ We analyze under which conditions on the initial data the regime that attractive forces are stronger than diffusion occurs and classify the global existence and finite time blow-up of dynamical solutions by virtue of stationary solutions. Precisely, solutions exist globally in time if the $L^m$ norm of the initial data $\\\\|u_0\\\\|_{L^m(\\\\R^d)}$ is less than the $L^m$ norm of stationary solutions $\\\\|U(x)\\\\|_{L^m(\\\\R^d)}$. Whereas there are blowing-up solutions for $\\\\|u_0\\\\|_{L^m(\\\\R^d)}>\\\\|U(x)\\\\|_{L^m(\\\\R^d)}$.\",\"PeriodicalId\":51015,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series B\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdsb.2023126\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcdsb.2023126","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑具有非线性多孔介质型扩散和非局部吸引幂律相互作用的Keller-Segel模型,重点关注比牛顿相互作用更少奇异的势。这里,选择非线性扩散为$m=\frac{2d}{d+2s}$,使得相关的自由能是共形不变的,并且对于任意常数$c$和某些$\lambda>0, x_0 \in \R^d.$都有稳态解族$U(x)=c\left(\frac{\lambda}{\lambda^2+|x-x_0|^2}\right)^{\frac{d+2s}{2}}$。我们分析了在初始数据上出现引力强于扩散的状态的条件,并利用稳态解对动力学解的整体存在性和有限时间爆破进行了分类。准确地说,当初始数据$\|u_0\|_{L^m(\R^d)}$的$L^m$范数小于平稳解$\|U(x)\|_{L^m(\R^d)}$的$L^m$范数时,解在时间上全局存在。而对于$\|u_0\|_{L^m(\R^d)}>\|U(x)\|_{L^m(\R^d)}$,也有爆炸性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The aggregation-diffusion equation with energy critical exponent
We consider a Keller-Segel model with non-linear porous medium type diffusion and nonlocal attractive power law interaction, focusing on potentials that are less singular than Newtonian interaction. Here, the nonlinear diffusion is chosen to be $m=\frac{2d}{d+2s}$ in such a way that the associated free energy is conformal invariant and there is a family of stationary solutions $U(x)=c\left(\frac{\lambda}{\lambda^2+|x-x_0|^2}\right)^{\frac{d+2s}{2}}$ for any constant $c$ and some $\lambda>0, x_0 \in \R^d.$ We analyze under which conditions on the initial data the regime that attractive forces are stronger than diffusion occurs and classify the global existence and finite time blow-up of dynamical solutions by virtue of stationary solutions. Precisely, solutions exist globally in time if the $L^m$ norm of the initial data $\|u_0\|_{L^m(\R^d)}$ is less than the $L^m$ norm of stationary solutions $\|U(x)\|_{L^m(\R^d)}$. Whereas there are blowing-up solutions for $\|u_0\|_{L^m(\R^d)}>\|U(x)\|_{L^m(\R^d)}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
216
审稿时长
6 months
期刊介绍: Centered around dynamics, DCDS-B is an interdisciplinary journal focusing on the interactions between mathematical modeling, analysis and scientific computations. The mission of the Journal is to bridge mathematics and sciences by publishing research papers that augment the fundamental ways we interpret, model and predict scientific phenomena. The Journal covers a broad range of areas including chemical, engineering, physical and life sciences. A more detailed indication is given by the subject interests of the members of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信