{"title":"多对数积分的一些bbp型级数","authors":"A. Sofo","doi":"10.12697/acutm.2021.25.21","DOIUrl":null,"url":null,"abstract":"An investigation into a family of definite integrals containing log-polylog functions will be undertaken in this paper. It will be shown that Euler sums play an important part in the solution of these integrals and may be represented as a BBP-type formula. In a special case we prove that the corresponding log integral can be represented as a linear combination of the product of zeta functions and the Dirichlet beta function.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"7 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some BBP-type series for polylog integrals\",\"authors\":\"A. Sofo\",\"doi\":\"10.12697/acutm.2021.25.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation into a family of definite integrals containing log-polylog functions will be undertaken in this paper. It will be shown that Euler sums play an important part in the solution of these integrals and may be represented as a BBP-type formula. In a special case we prove that the corresponding log integral can be represented as a linear combination of the product of zeta functions and the Dirichlet beta function.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2021.25.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2021.25.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
An investigation into a family of definite integrals containing log-polylog functions will be undertaken in this paper. It will be shown that Euler sums play an important part in the solution of these integrals and may be represented as a BBP-type formula. In a special case we prove that the corresponding log integral can be represented as a linear combination of the product of zeta functions and the Dirichlet beta function.