{"title":"关于约简环的零因子图和湮灭理想图的注释","authors":"M. Badie","doi":"10.2478/auom-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract We translate some graph properties of 𝔸𝔾(R) and Γ(R) to some topological properties of Zariski topology. We prove that the facts “(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(𝔸𝔾 (R)) = 3. (4) Rad(Γ(R)) = 3. (5) Γ(R) is triangulated (6) 𝔸𝔾 (R) is triangulated.” are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dtt(𝔸𝔾 (R)) = |ℬ(R)| and also if in addition |Min(R)| > 2, then dt(𝔸𝔾 (R)) = |ℬ (R)|. Finally, it is shown that dt(𝔸𝔾 (R)) is finite if and only if dtt(𝔸𝔾 (R)) is finite if and only if Min(R) is finite.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"1 1","pages":"51 - 70"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on the zero-divisor graph and annihilating-ideal graph of a reduced ring\",\"authors\":\"M. Badie\",\"doi\":\"10.2478/auom-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We translate some graph properties of 𝔸𝔾(R) and Γ(R) to some topological properties of Zariski topology. We prove that the facts “(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(𝔸𝔾 (R)) = 3. (4) Rad(Γ(R)) = 3. (5) Γ(R) is triangulated (6) 𝔸𝔾 (R) is triangulated.” are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dtt(𝔸𝔾 (R)) = |ℬ(R)| and also if in addition |Min(R)| > 2, then dt(𝔸𝔾 (R)) = |ℬ (R)|. Finally, it is shown that dt(𝔸𝔾 (R)) is finite if and only if dtt(𝔸𝔾 (R)) is finite if and only if Min(R) is finite.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"1 1\",\"pages\":\"51 - 70\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Notes on the zero-divisor graph and annihilating-ideal graph of a reduced ring
Abstract We translate some graph properties of 𝔸𝔾(R) and Γ(R) to some topological properties of Zariski topology. We prove that the facts “(1) The zero ideal of R is an anti fixed-place ideal. (2) Min(R) does not have any isolated point. (3) Rad(𝔸𝔾 (R)) = 3. (4) Rad(Γ(R)) = 3. (5) Γ(R) is triangulated (6) 𝔸𝔾 (R) is triangulated.” are equivalent. Also, we show that if the zero ideal of a ring R is a fixed-place ideal, then dtt(𝔸𝔾 (R)) = |ℬ(R)| and also if in addition |Min(R)| > 2, then dt(𝔸𝔾 (R)) = |ℬ (R)|. Finally, it is shown that dt(𝔸𝔾 (R)) is finite if and only if dtt(𝔸𝔾 (R)) is finite if and only if Min(R) is finite.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.