N. S. Sri Aprilia, Abdul Khalil Hps, N. Olaiya, A. Amin, C. Abdullah, Suraiya Kamarazaman, Z. Zuhra, Khairul Rahmah, F. Fitriani, D. Gopakumar
{"title":"紫外光照射对纳米纤维素增强聚乙烯醇复合膜性能的降解影响","authors":"N. S. Sri Aprilia, Abdul Khalil Hps, N. Olaiya, A. Amin, C. Abdullah, Suraiya Kamarazaman, Z. Zuhra, Khairul Rahmah, F. Fitriani, D. Gopakumar","doi":"10.1177/14777606211038957","DOIUrl":null,"url":null,"abstract":"PVA used in packaging applications has been faced with a UV light degradation challenge, which often reduces its durability while in use. The UV light stability enhancement effect of nanocrystalline cellulose (NCC) reinforcement in PVA was studied. Polyvinyl alcohol composite film was reinforced with NCC from palm oil waste (PVA-NCC film) and exposed to UV light (22 W, SUV-16 254 nm) for different time duration to study the material durability enhancement. The percentage weight loss of the samples was measured to observe the UV light degradation effect. Furthermore, the samples’ structural, morphological, and tensile properties were studied before and after exposure to UV light with FT-IR, scanning electron microscopy (SEM), and tensile test. The results showed physical degradation, morphological and tensile properties enhancement of PVA with NCC’s addition. The addition of NCC to the PVA matrix reduced the degradation rate under UV light significantly. Also, the percentage of weight loss was observed to change with the exposure time to UV light.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"24 1","pages":"21 - 37"},"PeriodicalIF":1.1000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ultraviolet light exposure degradation effect on the properties of nanocrystalline cellulose-reinforced polyvinyl alcohol composite film\",\"authors\":\"N. S. Sri Aprilia, Abdul Khalil Hps, N. Olaiya, A. Amin, C. Abdullah, Suraiya Kamarazaman, Z. Zuhra, Khairul Rahmah, F. Fitriani, D. Gopakumar\",\"doi\":\"10.1177/14777606211038957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PVA used in packaging applications has been faced with a UV light degradation challenge, which often reduces its durability while in use. The UV light stability enhancement effect of nanocrystalline cellulose (NCC) reinforcement in PVA was studied. Polyvinyl alcohol composite film was reinforced with NCC from palm oil waste (PVA-NCC film) and exposed to UV light (22 W, SUV-16 254 nm) for different time duration to study the material durability enhancement. The percentage weight loss of the samples was measured to observe the UV light degradation effect. Furthermore, the samples’ structural, morphological, and tensile properties were studied before and after exposure to UV light with FT-IR, scanning electron microscopy (SEM), and tensile test. The results showed physical degradation, morphological and tensile properties enhancement of PVA with NCC’s addition. The addition of NCC to the PVA matrix reduced the degradation rate under UV light significantly. Also, the percentage of weight loss was observed to change with the exposure time to UV light.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"24 1\",\"pages\":\"21 - 37\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606211038957\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606211038957","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Ultraviolet light exposure degradation effect on the properties of nanocrystalline cellulose-reinforced polyvinyl alcohol composite film
PVA used in packaging applications has been faced with a UV light degradation challenge, which often reduces its durability while in use. The UV light stability enhancement effect of nanocrystalline cellulose (NCC) reinforcement in PVA was studied. Polyvinyl alcohol composite film was reinforced with NCC from palm oil waste (PVA-NCC film) and exposed to UV light (22 W, SUV-16 254 nm) for different time duration to study the material durability enhancement. The percentage weight loss of the samples was measured to observe the UV light degradation effect. Furthermore, the samples’ structural, morphological, and tensile properties were studied before and after exposure to UV light with FT-IR, scanning electron microscopy (SEM), and tensile test. The results showed physical degradation, morphological and tensile properties enhancement of PVA with NCC’s addition. The addition of NCC to the PVA matrix reduced the degradation rate under UV light significantly. Also, the percentage of weight loss was observed to change with the exposure time to UV light.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.