{"title":"响应面法优化无溶剂体系中酶促合成己酸乙酯的工艺","authors":"Sarita D. Gawas, N. Lokanath, V. Rathod","doi":"10.1515/boca-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract The present paper demonstrates application of biocatalysis to the synthesis of ethyl hexanoate, i.e. pineapple flavour ester, in a solvent free system. In order to evaluate the effect of various process parameters on reaction conversion, response surface methodology (RSM) complemented by central composite design (CCD) was employed. A maximum conversion of 88.57% was obtained while changing one factor at a time, at optimum conditions of temperature (50 °C), enzyme dose (2%), molar ratio acid to alcohol (1:3), speed of agitation 250 rpm and reaction time of 120 min. Based on this RSM study, the optimum predicted conditions were: 1:3.39 alcohol to acid ratio, 2.35% enzyme loading and 48.83 oC, for a predicted conversion of 90.99%. The activation energy for the enzymatic esterification was determined and calculated to be 25.76 kJ/mol. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that the esterification reaction was non-spontaneous and an endothermic reaction. The reaction seems to follow bi-substrate Ping Pong Bi Bi mechanism with inhibition by both substrates.","PeriodicalId":8747,"journal":{"name":"Biocatalysis","volume":"1 1","pages":"14 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Optimization of enzymatic synthesis of ethyl hexanoate in a solvent free system using response surface methodology (RSM)\",\"authors\":\"Sarita D. Gawas, N. Lokanath, V. Rathod\",\"doi\":\"10.1515/boca-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present paper demonstrates application of biocatalysis to the synthesis of ethyl hexanoate, i.e. pineapple flavour ester, in a solvent free system. In order to evaluate the effect of various process parameters on reaction conversion, response surface methodology (RSM) complemented by central composite design (CCD) was employed. A maximum conversion of 88.57% was obtained while changing one factor at a time, at optimum conditions of temperature (50 °C), enzyme dose (2%), molar ratio acid to alcohol (1:3), speed of agitation 250 rpm and reaction time of 120 min. Based on this RSM study, the optimum predicted conditions were: 1:3.39 alcohol to acid ratio, 2.35% enzyme loading and 48.83 oC, for a predicted conversion of 90.99%. The activation energy for the enzymatic esterification was determined and calculated to be 25.76 kJ/mol. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that the esterification reaction was non-spontaneous and an endothermic reaction. The reaction seems to follow bi-substrate Ping Pong Bi Bi mechanism with inhibition by both substrates.\",\"PeriodicalId\":8747,\"journal\":{\"name\":\"Biocatalysis\",\"volume\":\"1 1\",\"pages\":\"14 - 26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/boca-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/boca-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of enzymatic synthesis of ethyl hexanoate in a solvent free system using response surface methodology (RSM)
Abstract The present paper demonstrates application of biocatalysis to the synthesis of ethyl hexanoate, i.e. pineapple flavour ester, in a solvent free system. In order to evaluate the effect of various process parameters on reaction conversion, response surface methodology (RSM) complemented by central composite design (CCD) was employed. A maximum conversion of 88.57% was obtained while changing one factor at a time, at optimum conditions of temperature (50 °C), enzyme dose (2%), molar ratio acid to alcohol (1:3), speed of agitation 250 rpm and reaction time of 120 min. Based on this RSM study, the optimum predicted conditions were: 1:3.39 alcohol to acid ratio, 2.35% enzyme loading and 48.83 oC, for a predicted conversion of 90.99%. The activation energy for the enzymatic esterification was determined and calculated to be 25.76 kJ/mol. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that the esterification reaction was non-spontaneous and an endothermic reaction. The reaction seems to follow bi-substrate Ping Pong Bi Bi mechanism with inhibition by both substrates.