基于空间光谱全变分的鲁棒有效高光谱泛锐化

Saori Takeyama, Shunsuke Ono, I. Kumazawa
{"title":"基于空间光谱全变分的鲁棒有效高光谱泛锐化","authors":"Saori Takeyama, Shunsuke Ono, I. Kumazawa","doi":"10.1109/ICASSP.2018.8462464","DOIUrl":null,"url":null,"abstract":"Acquiring high-resolution hyperspectral (HS) images is a very challenging task. To this end, hyperspectral pansharpening techniques have been widely studied, which estimate an HS image of high spatial and spectral resolution (high HS image) from a pair of an HS image of high spectral resolution but low spatial resolution (low HS image) and a high spatial resolution panchromatic (PAN) image. However, since these methods do not fully utilize the piecewise-smoothness of spectral information on HS images in estimation, they tend to produce spectral distortion when the low HS image contains noise. To tackle this issue, we propose a new hyperspectral pansharpening method using a spatio-spectral regularization. Our method not only effectively exploits observed information but also properly promotes the spatio-spectral piecewise-smoothness of the resulting high HS image, leading to high quality and robust estimation. The proposed method is reduced to a nonsmooth convex optimization problem, which is efficiently solved by a primal-dual splitting method. Our experiments demonstrate the advantages of our method over existing hyperspectral pansharpening methods.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"45 1","pages":"1603-1607"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust and Effective Hyperspectral Pansharpening Using Spatio-Spectral Total Variation\",\"authors\":\"Saori Takeyama, Shunsuke Ono, I. Kumazawa\",\"doi\":\"10.1109/ICASSP.2018.8462464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acquiring high-resolution hyperspectral (HS) images is a very challenging task. To this end, hyperspectral pansharpening techniques have been widely studied, which estimate an HS image of high spatial and spectral resolution (high HS image) from a pair of an HS image of high spectral resolution but low spatial resolution (low HS image) and a high spatial resolution panchromatic (PAN) image. However, since these methods do not fully utilize the piecewise-smoothness of spectral information on HS images in estimation, they tend to produce spectral distortion when the low HS image contains noise. To tackle this issue, we propose a new hyperspectral pansharpening method using a spatio-spectral regularization. Our method not only effectively exploits observed information but also properly promotes the spatio-spectral piecewise-smoothness of the resulting high HS image, leading to high quality and robust estimation. The proposed method is reduced to a nonsmooth convex optimization problem, which is efficiently solved by a primal-dual splitting method. Our experiments demonstrate the advantages of our method over existing hyperspectral pansharpening methods.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"45 1\",\"pages\":\"1603-1607\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8462464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

获取高分辨率高光谱(HS)图像是一项非常具有挑战性的任务。为此,高光谱泛锐化技术得到了广泛的研究,该技术将高光谱分辨率但低空间分辨率的HS图像(低HS图像)和高空间分辨率的全色(PAN)图像对估计出高空间分辨率和高光谱分辨率的HS图像(高HS图像)。然而,由于这些方法在估计时没有充分利用HS图像光谱信息的分段平滑性,当低HS图像含有噪声时,容易产生光谱失真。为了解决这一问题,我们提出了一种基于空间光谱正则化的高光谱泛锐化方法。我们的方法不仅有效地利用了观测信息,而且适当地提高了高HS图像的空间-光谱分段平滑性,从而实现了高质量和鲁棒性的估计。该方法被简化为一个非光滑凸优化问题,并通过原始对偶分裂方法有效地求解。实验结果表明,该方法优于现有的高光谱泛锐化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and Effective Hyperspectral Pansharpening Using Spatio-Spectral Total Variation
Acquiring high-resolution hyperspectral (HS) images is a very challenging task. To this end, hyperspectral pansharpening techniques have been widely studied, which estimate an HS image of high spatial and spectral resolution (high HS image) from a pair of an HS image of high spectral resolution but low spatial resolution (low HS image) and a high spatial resolution panchromatic (PAN) image. However, since these methods do not fully utilize the piecewise-smoothness of spectral information on HS images in estimation, they tend to produce spectral distortion when the low HS image contains noise. To tackle this issue, we propose a new hyperspectral pansharpening method using a spatio-spectral regularization. Our method not only effectively exploits observed information but also properly promotes the spatio-spectral piecewise-smoothness of the resulting high HS image, leading to high quality and robust estimation. The proposed method is reduced to a nonsmooth convex optimization problem, which is efficiently solved by a primal-dual splitting method. Our experiments demonstrate the advantages of our method over existing hyperspectral pansharpening methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信