一类一般椭圆变分-半变分不等式的数值分析

IF 2.5 2区 数学 Q1 MATHEMATICS
W. Han, M. Sofonea
{"title":"一类一般椭圆变分-半变分不等式的数值分析","authors":"W. Han, M. Sofonea","doi":"10.23952/jnva.6.2022.5.06","DOIUrl":null,"url":null,"abstract":". This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a C´ea’s inequality for error estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical analysis of a general elliptic variational-hemivariational inequality\",\"authors\":\"W. Han, M. Sofonea\",\"doi\":\"10.23952/jnva.6.2022.5.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a C´ea’s inequality for error estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution\",\"PeriodicalId\":48488,\"journal\":{\"name\":\"Journal of Nonlinear and Variational Analysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear and Variational Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.6.2022.5.06\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.5.06","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

. 本文对一类一般椭圆型变分-半变分不等式进行了数值分析。在回顾了一个解的存在唯一性结果之后,我们引入了一类伽辽金方法来求解该问题。在最小解正则性条件下证明了数值方法的收敛性,并导出了数值解误差估计的C´ea不等式。然后,我们将这些结果应用于一个变分-半变分不等式的数值分析,以研究一个模拟弹性体与反应基础接触的静力问题。特别地,在适当的解正则性条件下,我们得到了线性有限元解的最优阶误差估计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of a general elliptic variational-hemivariational inequality
. This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a C´ea’s inequality for error estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
3.40%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信