{"title":"一类一般椭圆变分-半变分不等式的数值分析","authors":"W. Han, M. Sofonea","doi":"10.23952/jnva.6.2022.5.06","DOIUrl":null,"url":null,"abstract":". This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a C´ea’s inequality for error estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical analysis of a general elliptic variational-hemivariational inequality\",\"authors\":\"W. Han, M. Sofonea\",\"doi\":\"10.23952/jnva.6.2022.5.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a C´ea’s inequality for error estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution\",\"PeriodicalId\":48488,\"journal\":{\"name\":\"Journal of Nonlinear and Variational Analysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear and Variational Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.6.2022.5.06\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.5.06","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Numerical analysis of a general elliptic variational-hemivariational inequality
. This paper is devoted to the numerical analysis of a general elliptic variational-hemivariational inequality. After a review of a solution existence and uniqueness result, we introduce a family of Galerkin methods to solve the problem. We prove the convergence of the numerical method under the minimal solution regularity condition available from the existence result and derive a C´ea’s inequality for error estimation of the numerical solutions. Then, we apply the results for the numerical analysis of a variational-hemivariational inequality in the study of a static problem which models the contact of an elastic body with a reactive foundation. In particular, under appropriate solution regularity conditions, we derive an optimal order error estimate for the linear finite element solution