Ming Li, Yu Han Huang, Yingqiang Qin, Bo Ren, Hong Yu Song, Yanhai Qi
{"title":"利用负载阿霉素的介孔二氧化硅光热触发控制药物传递系统有效杀伤人肝癌细胞","authors":"Ming Li, Yu Han Huang, Yingqiang Qin, Bo Ren, Hong Yu Song, Yanhai Qi","doi":"10.4028/p-g4xep4","DOIUrl":null,"url":null,"abstract":"Photothermal-temperature responsive [Ag nanoparticles-hollow mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (Ag@HMSN@PNIPAM-AA) nanoparticles were designed and prepared, and the combination of Ag nanoparticles (AgNPs) and [poly (N-isopropyl acrylamide-acrylic acid)] (PNIPAM-AA) was used as a switch of the photothermal-temperature effect to control drug release. The results of cell culture in vitro showed that [mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (MSN@PNIPAM-AA) and Ag@HMSN@PNIPAM-AA nanoparticles had good biocompatibility and less cytotoxicity, and Ag@HMSN@PNIPAM-AA nanoparticles had higher cell inhibition under 808 nm near-infrared light. The combination of near-infrared light and doxorubicin showed higher drug release efficiency and a stronger inhibitory effect on HepG2 cell growth. These characteristics indicate that Ag@HMSN@PNIPAM-AA nanoparticles have great potential for treatment. This study also proved the universal applicability of Ag@HMSN@PNIPAM-AA nanoparticles. Different model drugs and nanoparticles can play different roles and have development potential.","PeriodicalId":7271,"journal":{"name":"Advanced Materials Research","volume":"22 1","pages":"91 - 98"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermally Triggered Control of the Drug Delivery System Using Doxorubicin-Loaded Mesoporous Silica for Effective Killing of Human Hepatoma Cells\",\"authors\":\"Ming Li, Yu Han Huang, Yingqiang Qin, Bo Ren, Hong Yu Song, Yanhai Qi\",\"doi\":\"10.4028/p-g4xep4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photothermal-temperature responsive [Ag nanoparticles-hollow mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (Ag@HMSN@PNIPAM-AA) nanoparticles were designed and prepared, and the combination of Ag nanoparticles (AgNPs) and [poly (N-isopropyl acrylamide-acrylic acid)] (PNIPAM-AA) was used as a switch of the photothermal-temperature effect to control drug release. The results of cell culture in vitro showed that [mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (MSN@PNIPAM-AA) and Ag@HMSN@PNIPAM-AA nanoparticles had good biocompatibility and less cytotoxicity, and Ag@HMSN@PNIPAM-AA nanoparticles had higher cell inhibition under 808 nm near-infrared light. The combination of near-infrared light and doxorubicin showed higher drug release efficiency and a stronger inhibitory effect on HepG2 cell growth. These characteristics indicate that Ag@HMSN@PNIPAM-AA nanoparticles have great potential for treatment. This study also proved the universal applicability of Ag@HMSN@PNIPAM-AA nanoparticles. Different model drugs and nanoparticles can play different roles and have development potential.\",\"PeriodicalId\":7271,\"journal\":{\"name\":\"Advanced Materials Research\",\"volume\":\"22 1\",\"pages\":\"91 - 98\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-g4xep4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-g4xep4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photothermally Triggered Control of the Drug Delivery System Using Doxorubicin-Loaded Mesoporous Silica for Effective Killing of Human Hepatoma Cells
Photothermal-temperature responsive [Ag nanoparticles-hollow mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (Ag@HMSN@PNIPAM-AA) nanoparticles were designed and prepared, and the combination of Ag nanoparticles (AgNPs) and [poly (N-isopropyl acrylamide-acrylic acid)] (PNIPAM-AA) was used as a switch of the photothermal-temperature effect to control drug release. The results of cell culture in vitro showed that [mesoporous silica nanospheres–poly (N-isopropyl acrylamide-acrylic acid)] (MSN@PNIPAM-AA) and Ag@HMSN@PNIPAM-AA nanoparticles had good biocompatibility and less cytotoxicity, and Ag@HMSN@PNIPAM-AA nanoparticles had higher cell inhibition under 808 nm near-infrared light. The combination of near-infrared light and doxorubicin showed higher drug release efficiency and a stronger inhibitory effect on HepG2 cell growth. These characteristics indicate that Ag@HMSN@PNIPAM-AA nanoparticles have great potential for treatment. This study also proved the universal applicability of Ag@HMSN@PNIPAM-AA nanoparticles. Different model drugs and nanoparticles can play different roles and have development potential.