超大样本的平滑样条方差分析:通过舍入参数进行可扩展计算

Nathaniel E. Helwig, Ping Ma
{"title":"超大样本的平滑样条方差分析:通过舍入参数进行可扩展计算","authors":"Nathaniel E. Helwig, Ping Ma","doi":"10.4310/SII.2016.V9.N4.A3","DOIUrl":null,"url":null,"abstract":"In the current era of big data, researchers routinely collect and analyze data of super-large sample sizes. Data-oriented statistical methods have been developed to extract information from super-large data. Smoothing spline ANOVA (SSANOVA) is a promising approach for extracting information from noisy data; however, the heavy computational cost of SSANOVA hinders its wide application. In this paper, we propose a new algorithm for fitting SSANOVA models to super-large sample data. In this algorithm, we introduce rounding parameters to make the computation scalable. To demonstrate the benefits of the rounding parameters, we present a simulation study and a real data example using electroencephalography data. Our results reveal that (using the rounding parameters) a researcher can fit nonparametric regression models to very large samples within a few seconds using a standard laptop or tablet computer.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters\",\"authors\":\"Nathaniel E. Helwig, Ping Ma\",\"doi\":\"10.4310/SII.2016.V9.N4.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current era of big data, researchers routinely collect and analyze data of super-large sample sizes. Data-oriented statistical methods have been developed to extract information from super-large data. Smoothing spline ANOVA (SSANOVA) is a promising approach for extracting information from noisy data; however, the heavy computational cost of SSANOVA hinders its wide application. In this paper, we propose a new algorithm for fitting SSANOVA models to super-large sample data. In this algorithm, we introduce rounding parameters to make the computation scalable. To demonstrate the benefits of the rounding parameters, we present a simulation study and a real data example using electroencephalography data. Our results reveal that (using the rounding parameters) a researcher can fit nonparametric regression models to very large samples within a few seconds using a standard laptop or tablet computer.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/SII.2016.V9.N4.A3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/SII.2016.V9.N4.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在当前的大数据时代,研究人员通常会收集和分析超大样本量的数据。面向数据的统计方法已经发展到从超大数据中提取信息。平滑样条方差分析(SSANOVA)是一种很有前途的从噪声数据中提取信息的方法;然而,SSANOVA庞大的计算成本阻碍了其广泛应用。本文提出了一种超大样本数据拟合SSANOVA模型的新算法。在该算法中,我们引入了舍入参数,使计算具有可扩展性。为了证明舍入参数的好处,我们给出了一个模拟研究和一个使用脑电图数据的真实数据示例。我们的研究结果表明(使用舍入参数),研究人员可以在几秒钟内使用标准的笔记本电脑或平板电脑将非参数回归模型拟合到非常大的样本中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters
In the current era of big data, researchers routinely collect and analyze data of super-large sample sizes. Data-oriented statistical methods have been developed to extract information from super-large data. Smoothing spline ANOVA (SSANOVA) is a promising approach for extracting information from noisy data; however, the heavy computational cost of SSANOVA hinders its wide application. In this paper, we propose a new algorithm for fitting SSANOVA models to super-large sample data. In this algorithm, we introduce rounding parameters to make the computation scalable. To demonstrate the benefits of the rounding parameters, we present a simulation study and a real data example using electroencephalography data. Our results reveal that (using the rounding parameters) a researcher can fit nonparametric regression models to very large samples within a few seconds using a standard laptop or tablet computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信