需要改变行驶方向的狭窄环境的轨迹规划

Q4 Engineering
Joerg Roth
{"title":"需要改变行驶方向的狭窄环境的轨迹规划","authors":"Joerg Roth","doi":"10.14313/jamris/4-2021/23","DOIUrl":null,"url":null,"abstract":"In the area of mobile robotics, trajectory planning is the task to find a sequence of primitive trajectories that connect two configurations, whereas non-holonomic constraints, obstacles and driving costs have to be considered. In this paper, we present an approach that is able to handle situations that require changes of driving directions. In such situations, optimal trajectory sequences contain costly turning maneuvers – sometimes not even on the direct path between start and target. These situations are difficult for most optimization approaches as the robot partly has to drive paths with higher cost values that seem to be disadvantageous. We discuss the problem in depth and provide a solution that is based on maneuvers, partial backdriving and free-place discovery. We applied the approach on top of our Viterbi-based trajectory planner.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trajectory Planning for Narrow Environments That Require Changes of Driving Directions\",\"authors\":\"Joerg Roth\",\"doi\":\"10.14313/jamris/4-2021/23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the area of mobile robotics, trajectory planning is the task to find a sequence of primitive trajectories that connect two configurations, whereas non-holonomic constraints, obstacles and driving costs have to be considered. In this paper, we present an approach that is able to handle situations that require changes of driving directions. In such situations, optimal trajectory sequences contain costly turning maneuvers – sometimes not even on the direct path between start and target. These situations are difficult for most optimization approaches as the robot partly has to drive paths with higher cost values that seem to be disadvantageous. We discuss the problem in depth and provide a solution that is based on maneuvers, partial backdriving and free-place discovery. We applied the approach on top of our Viterbi-based trajectory planner.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/jamris/4-2021/23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/4-2021/23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在移动机器人领域中,轨迹规划的任务是找到连接两种构型的原始轨迹序列,同时需要考虑非完整约束、障碍和驾驶成本。在本文中,我们提出了一种能够处理需要改变驾驶方向的情况的方法。在这种情况下,最优轨迹序列包含代价高昂的转弯动作——有时甚至不在起点和目标之间的直接路径上。对于大多数优化方法来说,这些情况是困难的,因为机器人必须部分地行驶具有较高成本值的路径,这似乎是不利的。我们对该问题进行了深入的讨论,并提出了一种基于机动、部分倒推和自由位置发现的解决方案。我们将此方法应用于基于viterbi的轨迹规划器之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Planning for Narrow Environments That Require Changes of Driving Directions
In the area of mobile robotics, trajectory planning is the task to find a sequence of primitive trajectories that connect two configurations, whereas non-holonomic constraints, obstacles and driving costs have to be considered. In this paper, we present an approach that is able to handle situations that require changes of driving directions. In such situations, optimal trajectory sequences contain costly turning maneuvers – sometimes not even on the direct path between start and target. These situations are difficult for most optimization approaches as the robot partly has to drive paths with higher cost values that seem to be disadvantageous. We discuss the problem in depth and provide a solution that is based on maneuvers, partial backdriving and free-place discovery. We applied the approach on top of our Viterbi-based trajectory planner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信