Banach空间中非瞬时脉冲非线性隐式广义hilfer型分数阶微分方程

Abdelkrim Salim, M. Benchohra, J. Lazreg, J. Henderson
{"title":"Banach空间中非瞬时脉冲非线性隐式广义hilfer型分数阶微分方程","authors":"Abdelkrim Salim, M. Benchohra, J. Lazreg, J. Henderson","doi":"10.31197/atnaa.825294","DOIUrl":null,"url":null,"abstract":"In the present article, we prove some results concerning the existence of solutions for a class of initial value problem for nonlinear implicit fractional di erential equations with non-instantaneous impulses and generalized Hilfer fractional derivative in Banach spaces. The results are based on xed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. An example is included to show the applicability of our results.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"2014 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Nonlinear Implicit Generalized Hilfer-Type Fractional Differential Equations with Non-Instantaneous Impulses in Banach Spaces\",\"authors\":\"Abdelkrim Salim, M. Benchohra, J. Lazreg, J. Henderson\",\"doi\":\"10.31197/atnaa.825294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article, we prove some results concerning the existence of solutions for a class of initial value problem for nonlinear implicit fractional di erential equations with non-instantaneous impulses and generalized Hilfer fractional derivative in Banach spaces. The results are based on xed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. An example is included to show the applicability of our results.\",\"PeriodicalId\":7440,\"journal\":{\"name\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"volume\":\"2014 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in the Theory of Nonlinear Analysis and its Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31197/atnaa.825294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.825294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文证明了Banach空间中一类具有非瞬时脉冲和广义Hilfer分数阶导数的非线性隐式分数阶微分方程初值问题解的存在性。结果基于Darbo和Mönch的共轭点定理,并结合非紧性测度技术。通过一个例子来说明我们的结果的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Implicit Generalized Hilfer-Type Fractional Differential Equations with Non-Instantaneous Impulses in Banach Spaces
In the present article, we prove some results concerning the existence of solutions for a class of initial value problem for nonlinear implicit fractional di erential equations with non-instantaneous impulses and generalized Hilfer fractional derivative in Banach spaces. The results are based on xed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. An example is included to show the applicability of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信