{"title":"p进数域中二次无理数的周期表示","authors":"Stefano Barbero, Umberto Cerruti, N. Murru","doi":"10.1090/MCOM/3640","DOIUrl":null,"url":null,"abstract":"<p>Continued fractions have been widely studied in the field of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic numbers <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb Q_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call <italic>standard</italic>, for any quadratic irrational via <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb Q_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Moreover given two primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">p_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">p_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, using the Binomial transform, we are also able to pass from approximations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_{p_1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to approximations in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>p</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_{p_2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a given quadratic irrational. Then, we focus on a specific <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>–adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces <italic>standard</italic> representations for quadratic irrationals.</p>","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2267-2280"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Periodic representations for quadratic irrationals in the field of p-adic numbers\",\"authors\":\"Stefano Barbero, Umberto Cerruti, N. Murru\",\"doi\":\"10.1090/MCOM/3640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continued fractions have been widely studied in the field of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic numbers <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb Q_p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call <italic>standard</italic>, for any quadratic irrational via <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb R</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q Subscript p\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb Q_p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Moreover given two primes <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p_1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p_2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, using the Binomial transform, we are also able to pass from approximations in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q Subscript p 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}_{p_1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to approximations in <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q Subscript p 2\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msub>\\n <mml:mi>p</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}_{p_2}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for a given quadratic irrational. Then, we focus on a specific <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>–adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces <italic>standard</italic> representations for quadratic irrationals.</p>\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"1 1\",\"pages\":\"2267-2280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/MCOM/3640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
连分式在p进数Q p \mathbb Q_p领域得到了广泛的研究,但目前还没有一种算法能复制连分式在实数上所具有的所有优良性质,特别是在有限性和周期性方面。在本文中,我们首先提出了一个周期表示,我们称之为标准,对于任何二次无理数通过p进连分数,即使它不是由一个特定的算法得到。这个周期表示提供了R \mathbb R和Q p \mathbb Q_p中二次无理数的同时有理逼近。此外,给定两个素数p1p_1和p2p_2,利用二项式变换,我们也可以将qp1 \mathbb {Q}_{p_1}中的近似传递到给定二次无理数的qp2 \mathbb {Q}_{p_2}中的近似。然后,我们将重点放在一个特定的p进连分数算法上,证明它在处理有理数时停止在有限的步骤中,解决了Browkin [Math]的一篇论文中留下的一个问题。[p. 70(2001),第1281-1292页]。最后,我们研究了该算法的周期性,表明它何时产生二次无理数的标准表示。
Periodic representations for quadratic irrationals in the field of p-adic numbers
Continued fractions have been widely studied in the field of pp-adic numbers Qp\mathbb Q_p, but currently there is no algorithm replicating all the good properties that continued fractions have over the real numbers regarding, in particular, finiteness and periodicity. In this paper, first we propose a periodic representation, which we will call standard, for any quadratic irrational via pp-adic continued fractions, even if it is not obtained by a specific algorithm. This periodic representation provides simultaneous rational approximations for a quadratic irrational both in R\mathbb R and Qp\mathbb Q_p. Moreover given two primes p1p_1 and p2p_2, using the Binomial transform, we are also able to pass from approximations in Qp1\mathbb {Q}_{p_1} to approximations in Qp2\mathbb {Q}_{p_2} for a given quadratic irrational. Then, we focus on a specific pp–adic continued fraction algorithm proving that it stops in a finite number of steps when processes rational numbers, solving a problem left open in a paper by Browkin [Math. Comp. 70 (2001), pp. 1281–1292]. Finally, we study the periodicity of this algorithm showing when it produces standard representations for quadratic irrationals.