{"title":"纤维凸集的辛同调与环空间的辛同调","authors":"Kei Irie","doi":"10.4310/jsg.2022.v20.n2.a2","DOIUrl":null,"url":null,"abstract":"For any nonempty, compact and fiberwise convex set $K$ in $T^*\\mathbb{R}^n$, we prove an isomorphism between symplectic homology of $K$ and a certain relative homology of loop spaces of $\\mathbb{R}^n$. We also prove a formula which computes symplectic homology capacity (which is a symplectic capacity defined from symplectic homology) of $K$ using homology of loop spaces. As applications, we prove (i) symplectic homology capacity of any convex body is equal to its Ekeland-Hofer-Zehnder capacity, (ii) a certain subadditivity property of the Hofer-Zehnder capacity, which is a generalization of a result previously proved by Haim-Kislev.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Symplectic homology of fiberwise convex sets and homology of loop spaces\",\"authors\":\"Kei Irie\",\"doi\":\"10.4310/jsg.2022.v20.n2.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any nonempty, compact and fiberwise convex set $K$ in $T^*\\\\mathbb{R}^n$, we prove an isomorphism between symplectic homology of $K$ and a certain relative homology of loop spaces of $\\\\mathbb{R}^n$. We also prove a formula which computes symplectic homology capacity (which is a symplectic capacity defined from symplectic homology) of $K$ using homology of loop spaces. As applications, we prove (i) symplectic homology capacity of any convex body is equal to its Ekeland-Hofer-Zehnder capacity, (ii) a certain subadditivity property of the Hofer-Zehnder capacity, which is a generalization of a result previously proved by Haim-Kislev.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n2.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n2.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symplectic homology of fiberwise convex sets and homology of loop spaces
For any nonempty, compact and fiberwise convex set $K$ in $T^*\mathbb{R}^n$, we prove an isomorphism between symplectic homology of $K$ and a certain relative homology of loop spaces of $\mathbb{R}^n$. We also prove a formula which computes symplectic homology capacity (which is a symplectic capacity defined from symplectic homology) of $K$ using homology of loop spaces. As applications, we prove (i) symplectic homology capacity of any convex body is equal to its Ekeland-Hofer-Zehnder capacity, (ii) a certain subadditivity property of the Hofer-Zehnder capacity, which is a generalization of a result previously proved by Haim-Kislev.