岩石年代学与TIMS

1区 地球科学 Q1 Earth and Planetary Sciences
B. Schoene, E. Baxter
{"title":"岩石年代学与TIMS","authors":"B. Schoene, E. Baxter","doi":"10.2138/RMG.2017.83.8","DOIUrl":null,"url":null,"abstract":"Thermal ionization mass spectrometers, or TIMS, were developed by the pioneers of mass spectrometry in the mid-20th century, and have since been workhorses for generating isotopic data for a wide range of elements. Later-developed mass spectrometric techniques have many advantages over TIMS, including higher spatial resolution with in situ techniques, such as secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), and greater versatility in terms the elements that can be easily-and well-measured. The reason TIMS persists as an important method for geochronology is that for some key parent-daughter systems (e.g., U–Pb, Sm–Nd), it can produce isotopic data and resultant dates with 10–100 times higher precision and more quantifiable accuracy than in situ techniques, even when sample sizes are very small (such as those that might result from single crystals, or even small portions of zoned crystals). For many questions in the geosciences, the highest achievable precision and accuracy are required to resolve the timescales of processes and/or correlate events globally. As an example, modern TIMS U–Pb geochronology is capable of producing dates with precision and accuracy better than 0.1% of the age for single crystals with only a few picograms (pg) of Pb. Therefore, it is possible to constrain the durations of single zircon crystal growth in magmatic systems over tens to hundreds of kyr in Mesozoic and younger rocks. If these dates and rates can be connected with other igneous processes such as magma transfer, emplacement and crystallization, then it becomes possible to calibrate thermal and mass budgets in magmatic systems and evaluate competing models for pluton assembly and subvolcanic magma storage. As another example, Sm–Nd geochronology of garnet permits dates with precision better than ±1 million years for garnets of any age, including multiple concentric growth zones in single crystals. Such …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":"138 1","pages":"231-260"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Petrochronology and TIMS\",\"authors\":\"B. Schoene, E. Baxter\",\"doi\":\"10.2138/RMG.2017.83.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal ionization mass spectrometers, or TIMS, were developed by the pioneers of mass spectrometry in the mid-20th century, and have since been workhorses for generating isotopic data for a wide range of elements. Later-developed mass spectrometric techniques have many advantages over TIMS, including higher spatial resolution with in situ techniques, such as secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), and greater versatility in terms the elements that can be easily-and well-measured. The reason TIMS persists as an important method for geochronology is that for some key parent-daughter systems (e.g., U–Pb, Sm–Nd), it can produce isotopic data and resultant dates with 10–100 times higher precision and more quantifiable accuracy than in situ techniques, even when sample sizes are very small (such as those that might result from single crystals, or even small portions of zoned crystals). For many questions in the geosciences, the highest achievable precision and accuracy are required to resolve the timescales of processes and/or correlate events globally. As an example, modern TIMS U–Pb geochronology is capable of producing dates with precision and accuracy better than 0.1% of the age for single crystals with only a few picograms (pg) of Pb. Therefore, it is possible to constrain the durations of single zircon crystal growth in magmatic systems over tens to hundreds of kyr in Mesozoic and younger rocks. If these dates and rates can be connected with other igneous processes such as magma transfer, emplacement and crystallization, then it becomes possible to calibrate thermal and mass budgets in magmatic systems and evaluate competing models for pluton assembly and subvolcanic magma storage. As another example, Sm–Nd geochronology of garnet permits dates with precision better than ±1 million years for garnets of any age, including multiple concentric growth zones in single crystals. Such …\",\"PeriodicalId\":49624,\"journal\":{\"name\":\"Reviews in Mineralogy & Geochemistry\",\"volume\":\"138 1\",\"pages\":\"231-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mineralogy & Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/RMG.2017.83.8\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy & Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/RMG.2017.83.8","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 19

摘要

热电离质谱仪(TIMS)是由质谱学的先驱们在20世纪中期开发的,从那时起,它就一直是生成各种元素同位素数据的主力。与TIMS相比,后来发展起来的质谱技术有许多优势,包括更高的空间分辨率和原位技术,如二次离子质谱(SIMS)和激光烧蚀电感耦合等离子体质谱(LA-ICPMS),以及更广泛的多功能性,可以很容易和很好地测量元素。TIMS之所以一直是地质年代学的重要方法,是因为对于一些关键的父子系统(例如,U-Pb, Sm-Nd),它可以产生比原位技术精度高10-100倍的同位素数据和结果日期,甚至在样本量非常小的情况下(例如那些可能来自单晶,甚至是一小部分带状晶体的样品)。对于地球科学中的许多问题,需要最高可实现的精度和准确性来解决过程和/或全球相关事件的时间尺度。例如,现代TIMS U-Pb地质年代学能够以精度和精度优于0.1%的单晶年龄,只有几皮克(pg)的Pb。因此,在中生代及更年轻的岩石中,岩浆体系中单个锆石晶体生长的持续时间可以限制在几十到几百年。如果这些日期和速率能够与岩浆转移、侵位和结晶等其他火成岩过程联系起来,那么就有可能校准岩浆系统中的热预算和质量预算,并评估岩体组合和次火山岩浆储存的竞争模型。另一个例子是,石榴石的Sm-Nd年代学允许任何年龄的石榴石的日期精度优于±100万年,包括单晶中的多个同心生长带。这样的……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petrochronology and TIMS
Thermal ionization mass spectrometers, or TIMS, were developed by the pioneers of mass spectrometry in the mid-20th century, and have since been workhorses for generating isotopic data for a wide range of elements. Later-developed mass spectrometric techniques have many advantages over TIMS, including higher spatial resolution with in situ techniques, such as secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), and greater versatility in terms the elements that can be easily-and well-measured. The reason TIMS persists as an important method for geochronology is that for some key parent-daughter systems (e.g., U–Pb, Sm–Nd), it can produce isotopic data and resultant dates with 10–100 times higher precision and more quantifiable accuracy than in situ techniques, even when sample sizes are very small (such as those that might result from single crystals, or even small portions of zoned crystals). For many questions in the geosciences, the highest achievable precision and accuracy are required to resolve the timescales of processes and/or correlate events globally. As an example, modern TIMS U–Pb geochronology is capable of producing dates with precision and accuracy better than 0.1% of the age for single crystals with only a few picograms (pg) of Pb. Therefore, it is possible to constrain the durations of single zircon crystal growth in magmatic systems over tens to hundreds of kyr in Mesozoic and younger rocks. If these dates and rates can be connected with other igneous processes such as magma transfer, emplacement and crystallization, then it becomes possible to calibrate thermal and mass budgets in magmatic systems and evaluate competing models for pluton assembly and subvolcanic magma storage. As another example, Sm–Nd geochronology of garnet permits dates with precision better than ±1 million years for garnets of any age, including multiple concentric growth zones in single crystals. Such …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mineralogy & Geochemistry
Reviews in Mineralogy & Geochemistry 地学-地球化学与地球物理
CiteScore
8.30
自引率
0.00%
发文量
39
期刊介绍: RiMG is a series of multi-authored, soft-bound volumes containing concise reviews of the literature and advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry. The content of each volume consists of fully developed text which can be used for self-study, research, or as a text-book for graduate-level courses. RiMG volumes are typically produced in conjunction with a short course but can also be published without a short course. The series is jointly published by the Mineralogical Society of America (MSA) and the Geochemical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信