一种新的人脸识别特征提取描述符

IF 1.5 0 ENGINEERING, MULTIDISCIPLINARY
A. Salamh, H. Akyüz
{"title":"一种新的人脸识别特征提取描述符","authors":"A. Salamh, H. Akyüz","doi":"10.48084/etasr.4624","DOIUrl":null,"url":null,"abstract":"This paper presents a new feature extraction technique for face recognition. The new model, called multi-descriptor, is based on the well-known method of local binary patterns. It involves many different neighborhoods of the central pixel. Its unique advantage is that this descriptor allows the use of different neighborhood sizes instead of only one point. This structure ensures reasonable effectiveness and also provides the possibility to obtain a different distribution of features. Based on the new descriptor, a face recognition model using the pairwise feature descriptor based on the proposed descriptor was developed in this work, and local binary patterns were created to investigate the similarity and dissimilarity between the two models. For both models, the training was done using the support vector machine method on different face databases to overcome face recognition problems such as camera distance, expression, large head size, and illumination variations. The proposed technique achieved perfect accuracy on almost all tested databases including the Extended Yale B and Grimace database.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"3 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Feature Extraction Descriptor for Face Recognition\",\"authors\":\"A. Salamh, H. Akyüz\",\"doi\":\"10.48084/etasr.4624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new feature extraction technique for face recognition. The new model, called multi-descriptor, is based on the well-known method of local binary patterns. It involves many different neighborhoods of the central pixel. Its unique advantage is that this descriptor allows the use of different neighborhood sizes instead of only one point. This structure ensures reasonable effectiveness and also provides the possibility to obtain a different distribution of features. Based on the new descriptor, a face recognition model using the pairwise feature descriptor based on the proposed descriptor was developed in this work, and local binary patterns were created to investigate the similarity and dissimilarity between the two models. For both models, the training was done using the support vector machine method on different face databases to overcome face recognition problems such as camera distance, expression, large head size, and illumination variations. The proposed technique achieved perfect accuracy on almost all tested databases including the Extended Yale B and Grimace database.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.4624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.4624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的人脸识别特征提取技术。新模型称为多描述符,是基于众所周知的局部二进制模式方法。它涉及到中心像素的许多不同的邻域。它的独特优点是这个描述符允许使用不同的邻域大小,而不是只有一个点。这种结构保证了合理的有效性,也提供了获得不同特征分布的可能性。在此基础上,建立了基于双特征描述符的人脸识别模型,并建立了局部二值模式来研究两模型之间的相似性和差异性。对于这两个模型,使用支持向量机方法在不同的人脸数据库上进行训练,以克服人脸识别问题,如相机距离,表情,头部大小和光照变化。该方法在包括Extended Yale B和Grimace数据库在内的几乎所有被测试数据库上都取得了很好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Feature Extraction Descriptor for Face Recognition
This paper presents a new feature extraction technique for face recognition. The new model, called multi-descriptor, is based on the well-known method of local binary patterns. It involves many different neighborhoods of the central pixel. Its unique advantage is that this descriptor allows the use of different neighborhood sizes instead of only one point. This structure ensures reasonable effectiveness and also provides the possibility to obtain a different distribution of features. Based on the new descriptor, a face recognition model using the pairwise feature descriptor based on the proposed descriptor was developed in this work, and local binary patterns were created to investigate the similarity and dissimilarity between the two models. For both models, the training was done using the support vector machine method on different face databases to overcome face recognition problems such as camera distance, expression, large head size, and illumination variations. The proposed technique achieved perfect accuracy on almost all tested databases including the Extended Yale B and Grimace database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering, Technology & Applied Science Research
Engineering, Technology & Applied Science Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
3.00
自引率
46.70%
发文量
222
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信