大规模SIMO无线系统的最优非相干数据检测:一个多项式复杂度解

Haider Ali Jasim Alshamary, T. Al-Naffouri, A. Zaib, Weiyu Xu
{"title":"大规模SIMO无线系统的最优非相干数据检测:一个多项式复杂度解","authors":"Haider Ali Jasim Alshamary, T. Al-Naffouri, A. Zaib, Weiyu Xu","doi":"10.1109/DSP-SPE.2015.7369548","DOIUrl":null,"url":null,"abstract":"This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"99 1","pages":"172-177"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimal non-coherent data detection for massive SIMO wireless systems: A polynomial complexity solution\",\"authors\":\"Haider Ali Jasim Alshamary, T. Al-Naffouri, A. Zaib, Weiyu Xu\",\"doi\":\"10.1109/DSP-SPE.2015.7369548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.\",\"PeriodicalId\":91992,\"journal\":{\"name\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"volume\":\"99 1\",\"pages\":\"172-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSP-SPE.2015.7369548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

研究了大规模单输入多输出无线系统的联合最大似然信道估计和数据检测问题。我们提出了有效的算法来实现精确的ML非相干数据检测,用于恒模星座和非恒模星座。尽管在大规模SIMO系统中存在大量未知的信道系数,但我们表明预期的计算复杂度在接收天线数量上是线性的,在信道相干时间上是多项式的。据我们所知,我们的算法是第一个有效的算法,可以实现具有一般星座的大规模SIMO系统的精确联合ML信道估计和数据检测性能。仿真结果表明,我们的算法在较低的计算复杂度下取得了相当大的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal non-coherent data detection for massive SIMO wireless systems: A polynomial complexity solution
This paper considers the joint maximum likelihood (ML) channel estimation and data detection problem for massive SIMO (single input multiple output) wireless systems. We propose efficient algorithms achieving the exact ML non-coherent data detection, for both constant-modulus constellations and nonconstant-modulus constellations. Despite a large number of unknown channel coefficients in massive SIMO systems, we show that the expected computational complexity is linear in the number of receive antennas and polynomial in channel coherence time. To the best of our knowledge, our algorithms are the first efficient algorithms to achieve the exact joint ML channel estimation and data detection performance for massive SIMO systems with general constellations. Simulation results show our algorithms achieve considerable performance gains at a low computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信