{"title":"复合介质散射的时域边界积分方程和卷积正交","authors":"A. Rieder, F. Sayas, J. Melenk","doi":"10.1090/mcom/3730","DOIUrl":null,"url":null,"abstract":"We consider acoustic scattering in heterogeneous media with piecewise constant wave number. The discretization is carried out using a Galerkin boundary element method in space and Runge-Kutta convolution quadrature in time. We prove well-posedness of the scheme and provide a priori estimates for the convergence in space and time.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"2165-2195"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Time domain boundary integral equations and convolution quadrature for scattering by composite media\",\"authors\":\"A. Rieder, F. Sayas, J. Melenk\",\"doi\":\"10.1090/mcom/3730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider acoustic scattering in heterogeneous media with piecewise constant wave number. The discretization is carried out using a Galerkin boundary element method in space and Runge-Kutta convolution quadrature in time. We prove well-posedness of the scheme and provide a priori estimates for the convergence in space and time.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"1 1\",\"pages\":\"2165-2195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time domain boundary integral equations and convolution quadrature for scattering by composite media
We consider acoustic scattering in heterogeneous media with piecewise constant wave number. The discretization is carried out using a Galerkin boundary element method in space and Runge-Kutta convolution quadrature in time. We prove well-posedness of the scheme and provide a priori estimates for the convergence in space and time.