用于烟雾和火灾事件检测和定位的可解释的深度学习框架:grad - cam++和LIME的评估

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ioannis D. Apostolopoulos, I. Athanasoula, Mpesiana A. Tzani, P. Groumpos
{"title":"用于烟雾和火灾事件检测和定位的可解释的深度学习框架:grad - cam++和LIME的评估","authors":"Ioannis D. Apostolopoulos, I. Athanasoula, Mpesiana A. Tzani, P. Groumpos","doi":"10.3390/make4040057","DOIUrl":null,"url":null,"abstract":"Climate change is expected to increase fire events and activity with multiple impacts on human lives. Large grids of forest and city monitoring devices can assist in incident detection, accelerating human intervention in extinguishing fires before they get out of control. Artificial Intelligence promises to automate the detection of fire-related incidents. This study enrols 53,585 fire/smoke and normal images and benchmarks seventeen state-of-the-art Convolutional Neural Networks for distinguishing between the two classes. The Xception network proves to be superior to the rest of the CNNs, obtaining very high accuracy. Grad-CAM++ and LIME algorithms improve the post hoc explainability of Xception and verify that it is learning features found in the critical locations of the image. Both methods agree on the suggested locations, strengthening the abovementioned outcome.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"76 1","pages":"1124-1135"},"PeriodicalIF":4.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Explainable Deep Learning Framework for Detecting and Localising Smoke and Fire Incidents: Evaluation of Grad-CAM++ and LIME\",\"authors\":\"Ioannis D. Apostolopoulos, I. Athanasoula, Mpesiana A. Tzani, P. Groumpos\",\"doi\":\"10.3390/make4040057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is expected to increase fire events and activity with multiple impacts on human lives. Large grids of forest and city monitoring devices can assist in incident detection, accelerating human intervention in extinguishing fires before they get out of control. Artificial Intelligence promises to automate the detection of fire-related incidents. This study enrols 53,585 fire/smoke and normal images and benchmarks seventeen state-of-the-art Convolutional Neural Networks for distinguishing between the two classes. The Xception network proves to be superior to the rest of the CNNs, obtaining very high accuracy. Grad-CAM++ and LIME algorithms improve the post hoc explainability of Xception and verify that it is learning features found in the critical locations of the image. Both methods agree on the suggested locations, strengthening the abovementioned outcome.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"76 1\",\"pages\":\"1124-1135\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make4040057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make4040057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

预计气候变化将增加火灾事件和活动,对人类生活产生多重影响。森林和城市监测设备的大型网格可以协助事件检测,加速人为干预,在火灾失控之前将其扑灭。人工智能有望自动检测火灾相关事件。这项研究招募了53,585张火灾/烟雾和正常图像,并对17个最先进的卷积神经网络进行基准测试,以区分这两类图像。异常网络被证明优于其他的cnn,获得了很高的准确率。Grad-CAM++和LIME算法提高了Xception的事后可解释性,并验证它正在学习图像关键位置发现的特征。两种方法都同意建议的地点,加强了上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Explainable Deep Learning Framework for Detecting and Localising Smoke and Fire Incidents: Evaluation of Grad-CAM++ and LIME
Climate change is expected to increase fire events and activity with multiple impacts on human lives. Large grids of forest and city monitoring devices can assist in incident detection, accelerating human intervention in extinguishing fires before they get out of control. Artificial Intelligence promises to automate the detection of fire-related incidents. This study enrols 53,585 fire/smoke and normal images and benchmarks seventeen state-of-the-art Convolutional Neural Networks for distinguishing between the two classes. The Xception network proves to be superior to the rest of the CNNs, obtaining very high accuracy. Grad-CAM++ and LIME algorithms improve the post hoc explainability of Xception and verify that it is learning features found in the critical locations of the image. Both methods agree on the suggested locations, strengthening the abovementioned outcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信