在临界点附近将光滑函数化简为正规形式

Q4 Mathematics
A. S. Orevkova
{"title":"在临界点附近将光滑函数化简为正规形式","authors":"A. S. Orevkova","doi":"10.22405/2226-8383-2022-23-5-101-116","DOIUrl":null,"url":null,"abstract":"The paper is devoted to\"uniform\"reduction of smooth functions on 2-manifolds to canonical form near critical points by some coordinate changes in some neighbourhoods of these points. For singularity types $E_6,E_8$ and $A_n$, we explicitly construct such coordinate changes and estimate from below (in terms of $C^r$-norm of the function) the radius of a required neighbourhood.","PeriodicalId":37492,"journal":{"name":"Chebyshevskii Sbornik","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing smooth functions to normal forms near critical points\",\"authors\":\"A. S. Orevkova\",\"doi\":\"10.22405/2226-8383-2022-23-5-101-116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to\\\"uniform\\\"reduction of smooth functions on 2-manifolds to canonical form near critical points by some coordinate changes in some neighbourhoods of these points. For singularity types $E_6,E_8$ and $A_n$, we explicitly construct such coordinate changes and estimate from below (in terms of $C^r$-norm of the function) the radius of a required neighbourhood.\",\"PeriodicalId\":37492,\"journal\":{\"name\":\"Chebyshevskii Sbornik\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chebyshevskii Sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22405/2226-8383-2022-23-5-101-116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chebyshevskii Sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22405/2226-8383-2022-23-5-101-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了2-流形上的光滑函数在临界点附近的“一致”化约为正则形式,方法是在这些点的某些邻域上的一些坐标变化。对于奇异类型$E_6,E_8$和$A_n$,我们显式地构造这样的坐标变化,并从下面(根据函数的$C^r$-范数)估计所需邻域的半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing smooth functions to normal forms near critical points
The paper is devoted to"uniform"reduction of smooth functions on 2-manifolds to canonical form near critical points by some coordinate changes in some neighbourhoods of these points. For singularity types $E_6,E_8$ and $A_n$, we explicitly construct such coordinate changes and estimate from below (in terms of $C^r$-norm of the function) the radius of a required neighbourhood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chebyshevskii Sbornik
Chebyshevskii Sbornik Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to publish and disseminate research results of leading scientists in many areas of modern mathematics, some areas of physics and computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信