{"title":"一种基于物联网的低成本智能家居空气质量监测系统","authors":"Mehmet Taştan","doi":"10.3233/ais-210458","DOIUrl":null,"url":null,"abstract":"Global climate change and COVID-19 have changed our social and business life. People spend most of their daily lives indoors. Low-cost devices can monitor indoor air quality (IAQ) and reduce health problems caused by air pollutants. This study proposes a real-time and low-cost air quality monitoring system for smart homes based on Internet of Things (IoT). The developed IoT-based monitoring system is portable and provides users with real-time data transfer about IAQ. During the COVID-19 period, air quality data were collected from the kitchen, bedroom and balcony of their home, where a family of 5 spend most of their time. As a result of the analyzes, it has been determined that indoor particulate matter is mainly caused by outdoor infiltration and cooking emissions, and the CO2 value can rise well above the permissible health limits in case of insufficient ventilation due to night sleep activity. The obtained results show that the developed measuring devices may be suitable for measurement-based indoor air quality management. In addition, the proposed low-cost measurement system compared to existing systems; It has advantages such as modularity, scalability, low cost, portability, easy installation and open-source technologies.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"137 1","pages":"351-374"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A low-cost air quality monitoring system based on Internet of Things for smart homes\",\"authors\":\"Mehmet Taştan\",\"doi\":\"10.3233/ais-210458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global climate change and COVID-19 have changed our social and business life. People spend most of their daily lives indoors. Low-cost devices can monitor indoor air quality (IAQ) and reduce health problems caused by air pollutants. This study proposes a real-time and low-cost air quality monitoring system for smart homes based on Internet of Things (IoT). The developed IoT-based monitoring system is portable and provides users with real-time data transfer about IAQ. During the COVID-19 period, air quality data were collected from the kitchen, bedroom and balcony of their home, where a family of 5 spend most of their time. As a result of the analyzes, it has been determined that indoor particulate matter is mainly caused by outdoor infiltration and cooking emissions, and the CO2 value can rise well above the permissible health limits in case of insufficient ventilation due to night sleep activity. The obtained results show that the developed measuring devices may be suitable for measurement-based indoor air quality management. In addition, the proposed low-cost measurement system compared to existing systems; It has advantages such as modularity, scalability, low cost, portability, easy installation and open-source technologies.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"137 1\",\"pages\":\"351-374\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-210458\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-210458","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A low-cost air quality monitoring system based on Internet of Things for smart homes
Global climate change and COVID-19 have changed our social and business life. People spend most of their daily lives indoors. Low-cost devices can monitor indoor air quality (IAQ) and reduce health problems caused by air pollutants. This study proposes a real-time and low-cost air quality monitoring system for smart homes based on Internet of Things (IoT). The developed IoT-based monitoring system is portable and provides users with real-time data transfer about IAQ. During the COVID-19 period, air quality data were collected from the kitchen, bedroom and balcony of their home, where a family of 5 spend most of their time. As a result of the analyzes, it has been determined that indoor particulate matter is mainly caused by outdoor infiltration and cooking emissions, and the CO2 value can rise well above the permissible health limits in case of insufficient ventilation due to night sleep activity. The obtained results show that the developed measuring devices may be suitable for measurement-based indoor air quality management. In addition, the proposed low-cost measurement system compared to existing systems; It has advantages such as modularity, scalability, low cost, portability, easy installation and open-source technologies.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.