哈雷方法的新kantorovich型条件

J. A. Ezquerro, M. A. Hernández
{"title":"哈雷方法的新kantorovich型条件","authors":"J. A. Ezquerro,&nbsp;M. A. Hernández","doi":"10.1002/anac.200410024","DOIUrl":null,"url":null,"abstract":"<p>Two new semilocal convergence results of Newton-Kantorovich type are presented for the Halley method, where the usual convergence conditions, which appears in the literature, are relaxed. In one of them, it is supposed that the second derivative <i>F</i>″ of a nonlinear operator <i>F</i> satisfies ‖<i>F</i>″(<i>x</i><sub>0</sub>)‖ ≤ <i>α</i> instead of ‖<i>F</i>″(<i>x</i>)‖ ≤ <i>M</i>, for all <i>x</i> in a subset of the domain of <i>F</i>, where <i>α</i> and <i>M</i> are positive real constants. In the other one fewer convergence conditions are required than all the existing ones until now. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"2 1","pages":"70-77"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200410024","citationCount":"33","resultStr":"{\"title\":\"New Kantorovich-Type Conditions for Halley's Method\",\"authors\":\"J. A. Ezquerro,&nbsp;M. A. Hernández\",\"doi\":\"10.1002/anac.200410024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two new semilocal convergence results of Newton-Kantorovich type are presented for the Halley method, where the usual convergence conditions, which appears in the literature, are relaxed. In one of them, it is supposed that the second derivative <i>F</i>″ of a nonlinear operator <i>F</i> satisfies ‖<i>F</i>″(<i>x</i><sub>0</sub>)‖ ≤ <i>α</i> instead of ‖<i>F</i>″(<i>x</i>)‖ ≤ <i>M</i>, for all <i>x</i> in a subset of the domain of <i>F</i>, where <i>α</i> and <i>M</i> are positive real constants. In the other one fewer convergence conditions are required than all the existing ones until now. (© 2005 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"2 1\",\"pages\":\"70-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200410024\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200410024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

给出了Halley方法的两个新的Newton-Kantorovich型半局部收敛结果,放宽了文献中常见的收敛条件。其中,假设非线性算子F的二阶导数F″满足‖F″(x0)‖≤α而不是‖F″(x)‖≤M,对于F定义域子集中的所有x,其中α和M是正实常数。在另一种情况下,所需的收敛条件比目前所有的收敛条件都要少。(©2005 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Kantorovich-Type Conditions for Halley's Method

Two new semilocal convergence results of Newton-Kantorovich type are presented for the Halley method, where the usual convergence conditions, which appears in the literature, are relaxed. In one of them, it is supposed that the second derivative F″ of a nonlinear operator F satisfies ‖F″(x0)‖ ≤ α instead of ‖F″(x)‖ ≤ M, for all x in a subset of the domain of F, where α and M are positive real constants. In the other one fewer convergence conditions are required than all the existing ones until now. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信