基于实时视频的三维事件重建摄像机网络的同步与标定

Sudipta N. Sinha, M. Pollefeys
{"title":"基于实时视频的三维事件重建摄像机网络的同步与标定","authors":"Sudipta N. Sinha, M. Pollefeys","doi":"10.1109/CVPR.2005.338","DOIUrl":null,"url":null,"abstract":"We present an approach for automatic reconstruction of a dynamic event using multiple video cameras recording from different viewpoints. Our approach recovers all the necessary information by analyzing the motion of the silhouettes in the multiple video streams. The first step consists of computing the calibration and synchronization for pairs of cameras. We compute the temporal offset and epipolar geometry using an efficient RANSAC-based algorithm to search for the epipoles as well as for robustness. In the next stage the calibration and synchronization for the complete camera network is recovered and then refined through maximum likelihood estimation. Finally, a visual hull algorithm is used to the recover the dynamic shape of the observed object.","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"62 1","pages":"1196"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synchronization and Calibration of a Camera Network for 3D Event Reconstruction from Live Video\",\"authors\":\"Sudipta N. Sinha, M. Pollefeys\",\"doi\":\"10.1109/CVPR.2005.338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach for automatic reconstruction of a dynamic event using multiple video cameras recording from different viewpoints. Our approach recovers all the necessary information by analyzing the motion of the silhouettes in the multiple video streams. The first step consists of computing the calibration and synchronization for pairs of cameras. We compute the temporal offset and epipolar geometry using an efficient RANSAC-based algorithm to search for the epipoles as well as for robustness. In the next stage the calibration and synchronization for the complete camera network is recovered and then refined through maximum likelihood estimation. Finally, a visual hull algorithm is used to the recover the dynamic shape of the observed object.\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"62 1\",\"pages\":\"1196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2005.338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2005.338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种使用多个摄像机从不同视点记录动态事件的自动重建方法。我们的方法通过分析多个视频流中轮廓的运动来恢复所有必要的信息。第一步是计算相机对的标定和同步。我们使用一种高效的基于ransac的算法来计算时间偏移和外极几何,以搜索外极以及鲁棒性。在接下来的阶段,恢复整个相机网络的校准和同步,然后通过最大似然估计进行细化。最后,利用视觉船体算法恢复被观测物体的动态形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization and Calibration of a Camera Network for 3D Event Reconstruction from Live Video
We present an approach for automatic reconstruction of a dynamic event using multiple video cameras recording from different viewpoints. Our approach recovers all the necessary information by analyzing the motion of the silhouettes in the multiple video streams. The first step consists of computing the calibration and synchronization for pairs of cameras. We compute the temporal offset and epipolar geometry using an efficient RANSAC-based algorithm to search for the epipoles as well as for robustness. In the next stage the calibration and synchronization for the complete camera network is recovered and then refined through maximum likelihood estimation. Finally, a visual hull algorithm is used to the recover the dynamic shape of the observed object.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信