通过组装模块化RNA酶可编程形成催化RNA三角形和正方形

Hiroki Oi, D. Fujita, Yuki Suzuki, H. Sugiyama, Masayuki Endo, Shigeyoshi Matsumura, Y. Ikawa
{"title":"通过组装模块化RNA酶可编程形成催化RNA三角形和正方形","authors":"Hiroki Oi, D. Fujita, Yuki Suzuki, H. Sugiyama, Masayuki Endo, Shigeyoshi Matsumura, Y. Ikawa","doi":"10.1093/jb/mvw093","DOIUrl":null,"url":null,"abstract":"RNA is a biopolymer that is attractive for constructing nano-scale objects with complex structures. Three-dimensional (3D) structures of naturally occurring RNAs often have modular architectures. The 3D structure of a group I (GI) ribozyme from Tetrahymena has a typical modular architecture, which can be separated into two structural modules (ΔP5 and P5abc). The fully active ribozyme can be reconstructed by assembling the two separately prepared modules through highly specific and strong assembly between ΔP5 ribozyme and P5abc RNA. Such non-covalent assembly of the two modules allows the design of polygonal RNA nano-structures. Through rational redesign of the parent GI ribozyme, we constructed variant GI ribozymes as unit RNAs for polygonal-shaped (closed) oligomers with catalytic activity. Programmed trimerization and tetramerization of the unit RNAs afforded catalytically active nano-sized RNA triangles and squares, the structures of which were directly observed by atomic force microscopy (AFM).","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes\",\"authors\":\"Hiroki Oi, D. Fujita, Yuki Suzuki, H. Sugiyama, Masayuki Endo, Shigeyoshi Matsumura, Y. Ikawa\",\"doi\":\"10.1093/jb/mvw093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA is a biopolymer that is attractive for constructing nano-scale objects with complex structures. Three-dimensional (3D) structures of naturally occurring RNAs often have modular architectures. The 3D structure of a group I (GI) ribozyme from Tetrahymena has a typical modular architecture, which can be separated into two structural modules (ΔP5 and P5abc). The fully active ribozyme can be reconstructed by assembling the two separately prepared modules through highly specific and strong assembly between ΔP5 ribozyme and P5abc RNA. Such non-covalent assembly of the two modules allows the design of polygonal RNA nano-structures. Through rational redesign of the parent GI ribozyme, we constructed variant GI ribozymes as unit RNAs for polygonal-shaped (closed) oligomers with catalytic activity. Programmed trimerization and tetramerization of the unit RNAs afforded catalytically active nano-sized RNA triangles and squares, the structures of which were directly observed by atomic force microscopy (AFM).\",\"PeriodicalId\":22605,\"journal\":{\"name\":\"The Journal of Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvw093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

RNA是一种有吸引力的生物聚合物,用于构建具有复杂结构的纳米级物体。天然rna的三维(3D)结构通常具有模块化结构。四膜虫I族(GI)核酶的三维结构具有典型的模块化结构,可分为两个结构模块(ΔP5和P5abc)。通过ΔP5核酶与P5abc RNA之间的高特异性强组装,将两个单独制备的模块组装在一起,即可重构出完全活性的核酶。这种两个模块的非共价组装允许设计多边形RNA纳米结构。通过对亲本GI核酶的合理重新设计,我们构建了变体GI核酶作为具有催化活性的多边形(封闭)低聚物的单元rna。单元RNA的程序三聚化和四聚化产生具有催化活性的纳米RNA三角形和正方形,其结构可通过原子力显微镜(AFM)直接观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes
RNA is a biopolymer that is attractive for constructing nano-scale objects with complex structures. Three-dimensional (3D) structures of naturally occurring RNAs often have modular architectures. The 3D structure of a group I (GI) ribozyme from Tetrahymena has a typical modular architecture, which can be separated into two structural modules (ΔP5 and P5abc). The fully active ribozyme can be reconstructed by assembling the two separately prepared modules through highly specific and strong assembly between ΔP5 ribozyme and P5abc RNA. Such non-covalent assembly of the two modules allows the design of polygonal RNA nano-structures. Through rational redesign of the parent GI ribozyme, we constructed variant GI ribozymes as unit RNAs for polygonal-shaped (closed) oligomers with catalytic activity. Programmed trimerization and tetramerization of the unit RNAs afforded catalytically active nano-sized RNA triangles and squares, the structures of which were directly observed by atomic force microscopy (AFM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信