基于损失函数的小目标和运动检测及其优化技术综述

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
R. Chaturvedi, Udayan Ghose
{"title":"基于损失函数的小目标和运动检测及其优化技术综述","authors":"R. Chaturvedi, Udayan Ghose","doi":"10.1515/jisys-2022-0324","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this study is to supply an overview of research work based on video-based networks and tiny object identification. The identification of tiny items and video objects, as well as research on current technologies, are discussed first. The detection, loss function, and optimization techniques are classified and described in the form of a comparison table. These comparison tables are designed to help you identify differences in research utility, accuracy, and calculations. Finally, it highlights some future trends in video and small object detection (people, cars, animals, etc.), loss functions, and optimization techniques for solving new problems.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A review of small object and movement detection based loss function and optimized technique\",\"authors\":\"R. Chaturvedi, Udayan Ghose\",\"doi\":\"10.1515/jisys-2022-0324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The objective of this study is to supply an overview of research work based on video-based networks and tiny object identification. The identification of tiny items and video objects, as well as research on current technologies, are discussed first. The detection, loss function, and optimization techniques are classified and described in the form of a comparison table. These comparison tables are designed to help you identify differences in research utility, accuracy, and calculations. Finally, it highlights some future trends in video and small object detection (people, cars, animals, etc.), loss functions, and optimization techniques for solving new problems.\",\"PeriodicalId\":46139,\"journal\":{\"name\":\"Journal of Intelligent Systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jisys-2022-0324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究的目的是提供基于视频网络和微小目标识别的研究工作综述。首先讨论了微小物品和视频对象的识别,以及当前技术的研究。检测、损失函数和优化技术以比较表的形式进行分类和描述。这些比较表旨在帮助您识别研究效用,准确性和计算的差异。最后,它强调了视频和小对象检测(人、汽车、动物等)、损失函数和解决新问题的优化技术的一些未来趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of small object and movement detection based loss function and optimized technique
Abstract The objective of this study is to supply an overview of research work based on video-based networks and tiny object identification. The identification of tiny items and video objects, as well as research on current technologies, are discussed first. The detection, loss function, and optimization techniques are classified and described in the form of a comparison table. These comparison tables are designed to help you identify differences in research utility, accuracy, and calculations. Finally, it highlights some future trends in video and small object detection (people, cars, animals, etc.), loss functions, and optimization techniques for solving new problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信