{"title":"一种多属性评价模糊回归模型","authors":"J. Chachi, A. Kazemifard, M. Jalalvand","doi":"10.22111/IJFS.2021.6181","DOIUrl":null,"url":null,"abstract":"Most of the fuzzy regression approaches proposed in the literature adopted a single objective function in the generation of fuzzy regression models.These approaches mostly being criticized by their weak performances analysis and their sensitivity to outliers.Therefore, this paper develops a new multi-objective two-stage optimization and decision technique for fuzzy regression modeling problems in order to handle both of the criticisms.To handle the outlier problems, in the first stage, dynamic robust to outlier objective functions is considered in the estimation problem.The estimation problem is solved by running an algorithm which generates a set of fuzzy regression models.Then, in the next stage, we design a decision schema by employing Multi-Attribute Decision Making (MADM) problem.Here, the VIKOR method is employed as a proper means to provide a design to rank the generated fuzzy regression models by the first stage to introduce the most desirable model.We include simulation numerical results and a real-world house price problem in order to highlight the advantages of the proposed method in a comparison study.The results demonstrate the effectiveness of the proposed multi-objective optimization method to handle outlier detection problem while the prediction accuracy of the model is improved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A multi-attribute assessment of fuzzy regression models\",\"authors\":\"J. Chachi, A. Kazemifard, M. Jalalvand\",\"doi\":\"10.22111/IJFS.2021.6181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the fuzzy regression approaches proposed in the literature adopted a single objective function in the generation of fuzzy regression models.These approaches mostly being criticized by their weak performances analysis and their sensitivity to outliers.Therefore, this paper develops a new multi-objective two-stage optimization and decision technique for fuzzy regression modeling problems in order to handle both of the criticisms.To handle the outlier problems, in the first stage, dynamic robust to outlier objective functions is considered in the estimation problem.The estimation problem is solved by running an algorithm which generates a set of fuzzy regression models.Then, in the next stage, we design a decision schema by employing Multi-Attribute Decision Making (MADM) problem.Here, the VIKOR method is employed as a proper means to provide a design to rank the generated fuzzy regression models by the first stage to introduce the most desirable model.We include simulation numerical results and a real-world house price problem in order to highlight the advantages of the proposed method in a comparison study.The results demonstrate the effectiveness of the proposed multi-objective optimization method to handle outlier detection problem while the prediction accuracy of the model is improved.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A multi-attribute assessment of fuzzy regression models
Most of the fuzzy regression approaches proposed in the literature adopted a single objective function in the generation of fuzzy regression models.These approaches mostly being criticized by their weak performances analysis and their sensitivity to outliers.Therefore, this paper develops a new multi-objective two-stage optimization and decision technique for fuzzy regression modeling problems in order to handle both of the criticisms.To handle the outlier problems, in the first stage, dynamic robust to outlier objective functions is considered in the estimation problem.The estimation problem is solved by running an algorithm which generates a set of fuzzy regression models.Then, in the next stage, we design a decision schema by employing Multi-Attribute Decision Making (MADM) problem.Here, the VIKOR method is employed as a proper means to provide a design to rank the generated fuzzy regression models by the first stage to introduce the most desirable model.We include simulation numerical results and a real-world house price problem in order to highlight the advantages of the proposed method in a comparison study.The results demonstrate the effectiveness of the proposed multi-objective optimization method to handle outlier detection problem while the prediction accuracy of the model is improved.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.