一种多属性评价模糊回归模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. Chachi, A. Kazemifard, M. Jalalvand
{"title":"一种多属性评价模糊回归模型","authors":"J. Chachi, A. Kazemifard, M. Jalalvand","doi":"10.22111/IJFS.2021.6181","DOIUrl":null,"url":null,"abstract":"Most of the fuzzy regression approaches proposed in the literature adopted a single objective function in the generation of fuzzy regression models.These approaches mostly being criticized by their weak performances analysis and their sensitivity to outliers.Therefore, this paper develops a new multi-objective two-stage optimization and decision technique for fuzzy regression modeling problems in order to handle both of the criticisms.To handle the outlier problems, in the first stage, dynamic robust to outlier objective functions is considered in the estimation problem.The estimation problem is solved by running an algorithm which generates a set of fuzzy regression models.Then, in the next stage, we design a decision schema by employing Multi-Attribute Decision Making (MADM) problem.Here, the VIKOR method is employed as a proper means to provide a design to rank the generated fuzzy regression models by the first stage to introduce the most desirable model.We include simulation numerical results and a real-world house price problem in order to highlight the advantages of the proposed method in a comparison study.The results demonstrate the effectiveness of the proposed multi-objective optimization method to handle outlier detection problem while the prediction accuracy of the model is improved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A multi-attribute assessment of fuzzy regression models\",\"authors\":\"J. Chachi, A. Kazemifard, M. Jalalvand\",\"doi\":\"10.22111/IJFS.2021.6181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the fuzzy regression approaches proposed in the literature adopted a single objective function in the generation of fuzzy regression models.These approaches mostly being criticized by their weak performances analysis and their sensitivity to outliers.Therefore, this paper develops a new multi-objective two-stage optimization and decision technique for fuzzy regression modeling problems in order to handle both of the criticisms.To handle the outlier problems, in the first stage, dynamic robust to outlier objective functions is considered in the estimation problem.The estimation problem is solved by running an algorithm which generates a set of fuzzy regression models.Then, in the next stage, we design a decision schema by employing Multi-Attribute Decision Making (MADM) problem.Here, the VIKOR method is employed as a proper means to provide a design to rank the generated fuzzy regression models by the first stage to introduce the most desirable model.We include simulation numerical results and a real-world house price problem in order to highlight the advantages of the proposed method in a comparison study.The results demonstrate the effectiveness of the proposed multi-objective optimization method to handle outlier detection problem while the prediction accuracy of the model is improved.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

文献中提出的模糊回归方法大多采用单一目标函数生成模糊回归模型。这些方法大多因其性能分析薄弱和对异常值敏感而受到批评。因此,本文发展了一种新的模糊回归建模问题的多目标两阶段优化和决策技术,以处理这两种批评。为了处理离群值问题,第一阶段在估计问题中考虑了对离群值目标函数的动态鲁棒性。通过运行生成一组模糊回归模型的算法来解决估计问题。然后,在第二阶段,我们利用多属性决策(MADM)问题设计决策模式。在这里,采用VIKOR方法作为适当的手段,在第一阶段对生成的模糊回归模型进行排序,以引入最理想的模型。我们将模拟数值结果和现实世界的房价问题纳入对比研究,以突出所提出方法的优势。结果表明,所提出的多目标优化方法在处理离群点检测问题上是有效的,同时提高了模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-attribute assessment of fuzzy regression models
Most of the fuzzy regression approaches proposed in the literature adopted a single objective function in the generation of fuzzy regression models.These approaches mostly being criticized by their weak performances analysis and their sensitivity to outliers.Therefore, this paper develops a new multi-objective two-stage optimization and decision technique for fuzzy regression modeling problems in order to handle both of the criticisms.To handle the outlier problems, in the first stage, dynamic robust to outlier objective functions is considered in the estimation problem.The estimation problem is solved by running an algorithm which generates a set of fuzzy regression models.Then, in the next stage, we design a decision schema by employing Multi-Attribute Decision Making (MADM) problem.Here, the VIKOR method is employed as a proper means to provide a design to rank the generated fuzzy regression models by the first stage to introduce the most desirable model.We include simulation numerical results and a real-world house price problem in order to highlight the advantages of the proposed method in a comparison study.The results demonstrate the effectiveness of the proposed multi-objective optimization method to handle outlier detection problem while the prediction accuracy of the model is improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信