无监督几何感知深度激光雷达里程计

Younggun Cho, Giseop Kim, Ayoung Kim
{"title":"无监督几何感知深度激光雷达里程计","authors":"Younggun Cho, Giseop Kim, Ayoung Kim","doi":"10.1109/ICRA40945.2020.9197366","DOIUrl":null,"url":null,"abstract":"Learning-based ego-motion estimation approaches have recently drawn strong interest from researchers, mostly focusing on visual perception. A few learning-based approaches using Light Detection and Ranging (LiDAR) have been re-ported; however, they heavily rely on a supervised learning manner. Despite the meaningful performance of these approaches, supervised training requires ground-truth pose labels, which is the bottleneck for real-world applications. Differing from these approaches, we focus on unsupervised learning for LiDAR odometry (LO) without trainable labels. Achieving trainable LO in an unsupervised manner, we introduce the uncertainty-aware loss with geometric confidence, thereby al-lowing the reliability of the proposed pipeline. Evaluation on the KITTI, Complex Urban, and Oxford RobotCar datasets demonstrate the prominent performance of the proposed method compared to conventional model-based methods. The proposed method shows a comparable result against SuMa (in KITTI), LeGO-LOAM (in Complex Urban), and Stereo-VO (in Oxford RobotCar). The video and extra-information of the paper are described in https://sites.google.com/view/deeplo.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"2145-2152"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Unsupervised Geometry-Aware Deep LiDAR Odometry\",\"authors\":\"Younggun Cho, Giseop Kim, Ayoung Kim\",\"doi\":\"10.1109/ICRA40945.2020.9197366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning-based ego-motion estimation approaches have recently drawn strong interest from researchers, mostly focusing on visual perception. A few learning-based approaches using Light Detection and Ranging (LiDAR) have been re-ported; however, they heavily rely on a supervised learning manner. Despite the meaningful performance of these approaches, supervised training requires ground-truth pose labels, which is the bottleneck for real-world applications. Differing from these approaches, we focus on unsupervised learning for LiDAR odometry (LO) without trainable labels. Achieving trainable LO in an unsupervised manner, we introduce the uncertainty-aware loss with geometric confidence, thereby al-lowing the reliability of the proposed pipeline. Evaluation on the KITTI, Complex Urban, and Oxford RobotCar datasets demonstrate the prominent performance of the proposed method compared to conventional model-based methods. The proposed method shows a comparable result against SuMa (in KITTI), LeGO-LOAM (in Complex Urban), and Stereo-VO (in Oxford RobotCar). The video and extra-information of the paper are described in https://sites.google.com/view/deeplo.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"2145-2152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

基于学习的自我运动估计方法近年来引起了研究人员的强烈兴趣,主要集中在视觉感知方面。已经报道了一些使用光探测和测距(LiDAR)的基于学习的方法;然而,他们严重依赖于监督式的学习方式。尽管这些方法的表现有意义,但监督训练需要真实姿态标签,这是现实世界应用的瓶颈。与这些方法不同,我们专注于无可训练标签的激光雷达里程计(LO)的无监督学习。为了以无监督的方式实现可训练的LO,我们引入了几何置信度的不确定性感知损失,从而降低了所提出管道的可靠性。对KITTI、Complex Urban和Oxford RobotCar数据集的评估表明,与传统的基于模型的方法相比,该方法具有突出的性能。该方法与SuMa(在KITTI中)、LeGO-LOAM(在Complex Urban中)和Stereo-VO(在Oxford RobotCar中)的结果相当。本文的视频和其他资料见https://sites.google.com/view/deeplo。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Geometry-Aware Deep LiDAR Odometry
Learning-based ego-motion estimation approaches have recently drawn strong interest from researchers, mostly focusing on visual perception. A few learning-based approaches using Light Detection and Ranging (LiDAR) have been re-ported; however, they heavily rely on a supervised learning manner. Despite the meaningful performance of these approaches, supervised training requires ground-truth pose labels, which is the bottleneck for real-world applications. Differing from these approaches, we focus on unsupervised learning for LiDAR odometry (LO) without trainable labels. Achieving trainable LO in an unsupervised manner, we introduce the uncertainty-aware loss with geometric confidence, thereby al-lowing the reliability of the proposed pipeline. Evaluation on the KITTI, Complex Urban, and Oxford RobotCar datasets demonstrate the prominent performance of the proposed method compared to conventional model-based methods. The proposed method shows a comparable result against SuMa (in KITTI), LeGO-LOAM (in Complex Urban), and Stereo-VO (in Oxford RobotCar). The video and extra-information of the paper are described in https://sites.google.com/view/deeplo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信