{"title":"基于Winograd方法的剩余数系统中高性能数字图像滤波架构","authors":"M. Valueva, P. Lyakhov, N. Nagornov, G. Valuev","doi":"10.18287/2412-6179-co-933","DOIUrl":null,"url":null,"abstract":"Continuous improvement of methods for visual information registration, processing and storage leads to the need of improving technical characteristics of digital image processing systems. The paper proposes new high-performance digital filter architectures for image processing by the Winograd method with calculations performed in a residue number system with special-type moduli. To assess the performance and hardware costs of the proposed architectures, hardware simulation is carried out using a field-programmable gate array in a computer-aided design envi-ronment Xilinx Vivado 2018.3 for the target device Artix-7 xc7a200tffg1156-3. The results of hardware simulation show that the proposed filter architectures have 1.13 – 5.42 times higher performance, but require more hardware costs compared to the known methods. The results of this study can be used in the design of complex systems for image processing and analysis for their performance to be increased.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"133 6 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-performance digital image filtering architectures in the residue number system based on the Winograd method\",\"authors\":\"M. Valueva, P. Lyakhov, N. Nagornov, G. Valuev\",\"doi\":\"10.18287/2412-6179-co-933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous improvement of methods for visual information registration, processing and storage leads to the need of improving technical characteristics of digital image processing systems. The paper proposes new high-performance digital filter architectures for image processing by the Winograd method with calculations performed in a residue number system with special-type moduli. To assess the performance and hardware costs of the proposed architectures, hardware simulation is carried out using a field-programmable gate array in a computer-aided design envi-ronment Xilinx Vivado 2018.3 for the target device Artix-7 xc7a200tffg1156-3. The results of hardware simulation show that the proposed filter architectures have 1.13 – 5.42 times higher performance, but require more hardware costs compared to the known methods. The results of this study can be used in the design of complex systems for image processing and analysis for their performance to be increased.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"133 6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
High-performance digital image filtering architectures in the residue number system based on the Winograd method
Continuous improvement of methods for visual information registration, processing and storage leads to the need of improving technical characteristics of digital image processing systems. The paper proposes new high-performance digital filter architectures for image processing by the Winograd method with calculations performed in a residue number system with special-type moduli. To assess the performance and hardware costs of the proposed architectures, hardware simulation is carried out using a field-programmable gate array in a computer-aided design envi-ronment Xilinx Vivado 2018.3 for the target device Artix-7 xc7a200tffg1156-3. The results of hardware simulation show that the proposed filter architectures have 1.13 – 5.42 times higher performance, but require more hardware costs compared to the known methods. The results of this study can be used in the design of complex systems for image processing and analysis for their performance to be increased.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.