基于树- lstm的多头自注意情感分析模型

Lei Li, Yijian Pei, Chenyang Jin
{"title":"基于树- lstm的多头自注意情感分析模型","authors":"Lei Li, Yijian Pei, Chenyang Jin","doi":"10.1117/12.2604779","DOIUrl":null,"url":null,"abstract":"In the natural language processing task.We need to extract information from the tree topology. Sentence structure can be achieved by the dependency tree or constituency tree structure to represent.The LSTM can handle sequential information (equivalent to a sequential list), but not tree-structured data.Multi-headed self-attention is used in this model. The main purpose of this model is to reduce the computation and improve the parallel efficiency without damaging the effect of the model.Eliminates the CNN and RNN respectively corresponding to the large amount of calculation, parameter and unable to the disadvantage of parallel computing,keep parallel computing and long distance information.The model combines multi-headed self-attention and tree-LSTM, and uses maxout neurons in the output position.The accuracy of the model on SST was 89%.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"1 1","pages":"119130C - 119130C-7"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The sentiment analysis model with multi-head self-attention and Tree-LSTM\",\"authors\":\"Lei Li, Yijian Pei, Chenyang Jin\",\"doi\":\"10.1117/12.2604779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the natural language processing task.We need to extract information from the tree topology. Sentence structure can be achieved by the dependency tree or constituency tree structure to represent.The LSTM can handle sequential information (equivalent to a sequential list), but not tree-structured data.Multi-headed self-attention is used in this model. The main purpose of this model is to reduce the computation and improve the parallel efficiency without damaging the effect of the model.Eliminates the CNN and RNN respectively corresponding to the large amount of calculation, parameter and unable to the disadvantage of parallel computing,keep parallel computing and long distance information.The model combines multi-headed self-attention and tree-LSTM, and uses maxout neurons in the output position.The accuracy of the model on SST was 89%.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"1 1\",\"pages\":\"119130C - 119130C-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自然语言处理任务中。我们需要从树的拓扑结构中提取信息。句子结构可以通过依存树或选区树的结构来实现表示。LSTM可以处理顺序信息(相当于顺序列表),但不能处理树结构数据。该模型采用多头自注意。该模型的主要目的是在不破坏模型效果的前提下减少计算量,提高并行效率。消除了CNN和RNN分别对应的计算量大、参数化和无法并行计算的缺点,保持了并行计算和长距离信息。该模型将多头自注意与树- lstm相结合,并在输出位置使用maxout神经元。模型对海表温度的预测精度为89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The sentiment analysis model with multi-head self-attention and Tree-LSTM
In the natural language processing task.We need to extract information from the tree topology. Sentence structure can be achieved by the dependency tree or constituency tree structure to represent.The LSTM can handle sequential information (equivalent to a sequential list), but not tree-structured data.Multi-headed self-attention is used in this model. The main purpose of this model is to reduce the computation and improve the parallel efficiency without damaging the effect of the model.Eliminates the CNN and RNN respectively corresponding to the large amount of calculation, parameter and unable to the disadvantage of parallel computing,keep parallel computing and long distance information.The model combines multi-headed self-attention and tree-LSTM, and uses maxout neurons in the output position.The accuracy of the model on SST was 89%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信