包含适形分数阶导数的齐次线性分数阶微分方程的解

Anuj Tyagi, Jyotsna Chandel
{"title":"包含适形分数阶导数的齐次线性分数阶微分方程的解","authors":"Anuj Tyagi, Jyotsna Chandel","doi":"10.12723/mjs.63.1","DOIUrl":null,"url":null,"abstract":"In this paper, we have found the solution of linear sequential fractional differential equations involving conformable fractional derivatives of order  with constant coefficients. For this purpose, we first discussed fundamental properties of the conformable derivative and then obtained successive conformable derivatives of the fractional exponential function. After this, we determined the analytic solution of linear sequential fractional differential equations (L.S.F.D.E.) in terms of a fractional exponential function. We have demonstrated this developed method with a few examples of homogeneous linear fractional differential equations. This method gives a conjugation with the method to solve classical linear differential equations with constant coefficients.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of Homogeneous Linear Fractional Differential Equations Involving Conformable Fractional Derivative\",\"authors\":\"Anuj Tyagi, Jyotsna Chandel\",\"doi\":\"10.12723/mjs.63.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have found the solution of linear sequential fractional differential equations involving conformable fractional derivatives of order  with constant coefficients. For this purpose, we first discussed fundamental properties of the conformable derivative and then obtained successive conformable derivatives of the fractional exponential function. After this, we determined the analytic solution of linear sequential fractional differential equations (L.S.F.D.E.) in terms of a fractional exponential function. We have demonstrated this developed method with a few examples of homogeneous linear fractional differential equations. This method gives a conjugation with the method to solve classical linear differential equations with constant coefficients.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/mjs.63.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/mjs.63.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类常系数可合阶分数阶微分线性序列分数阶微分方程的解。为此,我们首先讨论了可调导数的基本性质,然后得到了分数阶指数函数的连续可调导数。在此之后,我们确定了线性序列分数阶微分方程(L.S.F.D.E.)在分数阶指数函数中的解析解。我们用几个齐次线性分数阶微分方程的例子证明了这种发展起来的方法。该方法是求解经典常系数线性微分方程的一种共轭方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Homogeneous Linear Fractional Differential Equations Involving Conformable Fractional Derivative
In this paper, we have found the solution of linear sequential fractional differential equations involving conformable fractional derivatives of order  with constant coefficients. For this purpose, we first discussed fundamental properties of the conformable derivative and then obtained successive conformable derivatives of the fractional exponential function. After this, we determined the analytic solution of linear sequential fractional differential equations (L.S.F.D.E.) in terms of a fractional exponential function. We have demonstrated this developed method with a few examples of homogeneous linear fractional differential equations. This method gives a conjugation with the method to solve classical linear differential equations with constant coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信