周长为5的图中的独立支配集

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Ararat Harutyunyan, P. Horn, Jacques Verstraëte
{"title":"周长为5的图中的独立支配集","authors":"Ararat Harutyunyan, P. Horn, Jacques Verstraëte","doi":"10.1017/s0963548320000279","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline1.png\" /><jats:tex-math>\n$\\gamma(G)$\n</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline2.png\" /><jats:tex-math>\n$${\\gamma _ \\circ }(G)$$\n</jats:tex-math></jats:alternatives></jats:inline-formula> denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if <jats:italic>G</jats:italic> is an <jats:italic>n</jats:italic>-vertex graph of minimum degree at least <jats:italic>d</jats:italic>, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548320000279_eqnu1.png\" /><jats:tex-math>$$\\begin{equation}\\gamma(G) \\leq \\frac{n}{d}(\\log d + 1).\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>In this paper the main result is that if <jats:italic>G</jats:italic> is any <jats:italic>n</jats:italic>-vertex <jats:italic>d</jats:italic>-regular graph of girth at least five, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548320000279_eqnu2.png\" /><jats:tex-math>$$\\begin{equation}\\gamma_(G) \\leq \\frac{n}{d}(\\log d + c)\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula>for some constant <jats:italic>c</jats:italic> independent of <jats:italic>d</jats:italic>. This result is sharp in the sense that as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline3.png\" /><jats:tex-math>\n$d \\rightarrow \\infty$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, almost all <jats:italic>d</jats:italic>-regular <jats:italic>n</jats:italic>-vertex graphs G of girth at least five have<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548320000279_eqnu3.png\" /><jats:tex-math>$$\\begin{equation}\\gamma_(G) \\sim \\frac{n}{d}\\log d.\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>Furthermore, if <jats:italic>G</jats:italic> is a disjoint union of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline4.png\" /><jats:tex-math>\n${n}/{(2d)}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> complete bipartite graphs <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline5.png\" /><jats:tex-math>\n$K_{d,d}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, then <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline6.png\" /><jats:tex-math>\n${\\gamma_\\circ}(G) = \\frac{n}{2}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>. We also prove that there are <jats:italic>n</jats:italic>-vertex graphs G of minimum degree <jats:italic>d</jats:italic> and whose maximum degree grows not much faster than <jats:italic>d</jats:italic> log <jats:italic>d</jats:italic> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline7.png\" /><jats:tex-math>\n${\\gamma_\\circ}(G) \\sim {n}/{2}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline8.png\" /><jats:tex-math>\n$d \\rightarrow \\infty$\n</jats:tex-math></jats:alternatives></jats:inline-formula>. Therefore both the girth and regularity conditions are required for the main result.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Independent dominating sets in graphs of girth five\",\"authors\":\"Ararat Harutyunyan, P. Horn, Jacques Verstraëte\",\"doi\":\"10.1017/s0963548320000279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline1.png\\\" /><jats:tex-math>\\n$\\\\gamma(G)$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline2.png\\\" /><jats:tex-math>\\n$${\\\\gamma _ \\\\circ }(G)$$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if <jats:italic>G</jats:italic> is an <jats:italic>n</jats:italic>-vertex graph of minimum degree at least <jats:italic>d</jats:italic>, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548320000279_eqnu1.png\\\" /><jats:tex-math>$$\\\\begin{equation}\\\\gamma(G) \\\\leq \\\\frac{n}{d}(\\\\log d + 1).\\\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>In this paper the main result is that if <jats:italic>G</jats:italic> is any <jats:italic>n</jats:italic>-vertex <jats:italic>d</jats:italic>-regular graph of girth at least five, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548320000279_eqnu2.png\\\" /><jats:tex-math>$$\\\\begin{equation}\\\\gamma_(G) \\\\leq \\\\frac{n}{d}(\\\\log d + c)\\\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula>for some constant <jats:italic>c</jats:italic> independent of <jats:italic>d</jats:italic>. This result is sharp in the sense that as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline3.png\\\" /><jats:tex-math>\\n$d \\\\rightarrow \\\\infty$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>, almost all <jats:italic>d</jats:italic>-regular <jats:italic>n</jats:italic>-vertex graphs G of girth at least five have<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548320000279_eqnu3.png\\\" /><jats:tex-math>$$\\\\begin{equation}\\\\gamma_(G) \\\\sim \\\\frac{n}{d}\\\\log d.\\\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>Furthermore, if <jats:italic>G</jats:italic> is a disjoint union of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline4.png\\\" /><jats:tex-math>\\n${n}/{(2d)}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> complete bipartite graphs <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline5.png\\\" /><jats:tex-math>\\n$K_{d,d}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>, then <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline6.png\\\" /><jats:tex-math>\\n${\\\\gamma_\\\\circ}(G) = \\\\frac{n}{2}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>. We also prove that there are <jats:italic>n</jats:italic>-vertex graphs G of minimum degree <jats:italic>d</jats:italic> and whose maximum degree grows not much faster than <jats:italic>d</jats:italic> log <jats:italic>d</jats:italic> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline7.png\\\" /><jats:tex-math>\\n${\\\\gamma_\\\\circ}(G) \\\\sim {n}/{2}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline8.png\\\" /><jats:tex-math>\\n$d \\\\rightarrow \\\\infty$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>. Therefore both the girth and regularity conditions are required for the main result.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548320000279\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0963548320000279","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

摘要

设$\gamma(G)$和$${\gamma _ \circ }(G)$$分别表示图G中最小支配集和最小独立支配集的大小。概率组合学的第一个结果是,如果G是最小度至少为d的n顶点图,那么$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$本文的主要结果是,如果G是任何最小度至少为5的n顶点d正则图,那么$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$对于某个常数c与d无关。这个结果是尖锐的,因为$d \rightarrow \infty$,几乎所有至少为5周长的d正则n顶点图G都有$$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$。如果G是${n}/{(2d)}$完全二部图$K_{d,d}$的不相交并,则${\gamma_\circ}(G) = \frac{n}{2}$。我们也证明了有n顶点图G的最小度为d,其最大度的增长速度不会比d log d快得多,使得${\gamma_\circ}(G) \sim {n}/{2}$等于$d \rightarrow \infty$。因此,对于主要结果,周长条件和规则条件都是必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent dominating sets in graphs of girth five
Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$for some constant c independent of d. This result is sharp in the sense that as $d \rightarrow \infty$ , almost all d-regular n-vertex graphs G of girth at least five have$$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$ , then ${\gamma_\circ}(G) = \frac{n}{2}$ . We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$ . Therefore both the girth and regularity conditions are required for the main result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信