{"title":"周长为5的图中的独立支配集","authors":"Ararat Harutyunyan, P. Horn, Jacques Verstraëte","doi":"10.1017/s0963548320000279","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline1.png\" /><jats:tex-math>\n$\\gamma(G)$\n</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline2.png\" /><jats:tex-math>\n$${\\gamma _ \\circ }(G)$$\n</jats:tex-math></jats:alternatives></jats:inline-formula> denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if <jats:italic>G</jats:italic> is an <jats:italic>n</jats:italic>-vertex graph of minimum degree at least <jats:italic>d</jats:italic>, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548320000279_eqnu1.png\" /><jats:tex-math>$$\\begin{equation}\\gamma(G) \\leq \\frac{n}{d}(\\log d + 1).\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>In this paper the main result is that if <jats:italic>G</jats:italic> is any <jats:italic>n</jats:italic>-vertex <jats:italic>d</jats:italic>-regular graph of girth at least five, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548320000279_eqnu2.png\" /><jats:tex-math>$$\\begin{equation}\\gamma_(G) \\leq \\frac{n}{d}(\\log d + c)\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula>for some constant <jats:italic>c</jats:italic> independent of <jats:italic>d</jats:italic>. This result is sharp in the sense that as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline3.png\" /><jats:tex-math>\n$d \\rightarrow \\infty$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, almost all <jats:italic>d</jats:italic>-regular <jats:italic>n</jats:italic>-vertex graphs G of girth at least five have<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548320000279_eqnu3.png\" /><jats:tex-math>$$\\begin{equation}\\gamma_(G) \\sim \\frac{n}{d}\\log d.\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>Furthermore, if <jats:italic>G</jats:italic> is a disjoint union of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline4.png\" /><jats:tex-math>\n${n}/{(2d)}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> complete bipartite graphs <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline5.png\" /><jats:tex-math>\n$K_{d,d}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>, then <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline6.png\" /><jats:tex-math>\n${\\gamma_\\circ}(G) = \\frac{n}{2}$\n</jats:tex-math></jats:alternatives></jats:inline-formula>. We also prove that there are <jats:italic>n</jats:italic>-vertex graphs G of minimum degree <jats:italic>d</jats:italic> and whose maximum degree grows not much faster than <jats:italic>d</jats:italic> log <jats:italic>d</jats:italic> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline7.png\" /><jats:tex-math>\n${\\gamma_\\circ}(G) \\sim {n}/{2}$\n</jats:tex-math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548320000279_inline8.png\" /><jats:tex-math>\n$d \\rightarrow \\infty$\n</jats:tex-math></jats:alternatives></jats:inline-formula>. Therefore both the girth and regularity conditions are required for the main result.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Independent dominating sets in graphs of girth five\",\"authors\":\"Ararat Harutyunyan, P. Horn, Jacques Verstraëte\",\"doi\":\"10.1017/s0963548320000279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline1.png\\\" /><jats:tex-math>\\n$\\\\gamma(G)$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline2.png\\\" /><jats:tex-math>\\n$${\\\\gamma _ \\\\circ }(G)$$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if <jats:italic>G</jats:italic> is an <jats:italic>n</jats:italic>-vertex graph of minimum degree at least <jats:italic>d</jats:italic>, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548320000279_eqnu1.png\\\" /><jats:tex-math>$$\\\\begin{equation}\\\\gamma(G) \\\\leq \\\\frac{n}{d}(\\\\log d + 1).\\\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>In this paper the main result is that if <jats:italic>G</jats:italic> is any <jats:italic>n</jats:italic>-vertex <jats:italic>d</jats:italic>-regular graph of girth at least five, then<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548320000279_eqnu2.png\\\" /><jats:tex-math>$$\\\\begin{equation}\\\\gamma_(G) \\\\leq \\\\frac{n}{d}(\\\\log d + c)\\\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula>for some constant <jats:italic>c</jats:italic> independent of <jats:italic>d</jats:italic>. This result is sharp in the sense that as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline3.png\\\" /><jats:tex-math>\\n$d \\\\rightarrow \\\\infty$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>, almost all <jats:italic>d</jats:italic>-regular <jats:italic>n</jats:italic>-vertex graphs G of girth at least five have<jats:disp-formula><jats:alternatives><jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S0963548320000279_eqnu3.png\\\" /><jats:tex-math>$$\\\\begin{equation}\\\\gamma_(G) \\\\sim \\\\frac{n}{d}\\\\log d.\\\\end{equation}$$</jats:tex-math></jats:alternatives></jats:disp-formula></jats:p><jats:p>Furthermore, if <jats:italic>G</jats:italic> is a disjoint union of <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline4.png\\\" /><jats:tex-math>\\n${n}/{(2d)}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> complete bipartite graphs <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline5.png\\\" /><jats:tex-math>\\n$K_{d,d}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>, then <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline6.png\\\" /><jats:tex-math>\\n${\\\\gamma_\\\\circ}(G) = \\\\frac{n}{2}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>. We also prove that there are <jats:italic>n</jats:italic>-vertex graphs G of minimum degree <jats:italic>d</jats:italic> and whose maximum degree grows not much faster than <jats:italic>d</jats:italic> log <jats:italic>d</jats:italic> such that <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline7.png\\\" /><jats:tex-math>\\n${\\\\gamma_\\\\circ}(G) \\\\sim {n}/{2}$\\n</jats:tex-math></jats:alternatives></jats:inline-formula> as <jats:inline-formula><jats:alternatives><jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548320000279_inline8.png\\\" /><jats:tex-math>\\n$d \\\\rightarrow \\\\infty$\\n</jats:tex-math></jats:alternatives></jats:inline-formula>. Therefore both the girth and regularity conditions are required for the main result.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548320000279\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0963548320000279","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Independent dominating sets in graphs of girth five
Let
$\gamma(G)$
and
$${\gamma _ \circ }(G)$$
denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$for some constant c independent of d. This result is sharp in the sense that as
$d \rightarrow \infty$
, almost all d-regular n-vertex graphs G of girth at least five have$$\begin{equation}\gamma_(G) \sim \frac{n}{d}\log d.\end{equation}$$Furthermore, if G is a disjoint union of
${n}/{(2d)}$
complete bipartite graphs
$K_{d,d}$
, then
${\gamma_\circ}(G) = \frac{n}{2}$
. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that
${\gamma_\circ}(G) \sim {n}/{2}$
as
$d \rightarrow \infty$
. Therefore both the girth and regularity conditions are required for the main result.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.