{"title":"基于Jacobi多项式求解第二类弱奇异Volterra非光滑积分方程的分数阶积积分新方法的收敛性分析","authors":"Sayed Arsalan Sajjadi, H. Najafi, H. Aminikhah","doi":"10.1080/00207160.2023.2214643","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a novel fractional product integration method for solving the second kind weakly singular Volterra integral equations with non-smooth solutions based on Jacobi polynomials\",\"authors\":\"Sayed Arsalan Sajjadi, H. Najafi, H. Aminikhah\",\"doi\":\"10.1080/00207160.2023.2214643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2214643\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2214643","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Convergence analysis of a novel fractional product integration method for solving the second kind weakly singular Volterra integral equations with non-smooth solutions based on Jacobi polynomials
In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.