{"title":"基于Jacobi多项式求解第二类弱奇异Volterra非光滑积分方程的分数阶积积分新方法的收敛性分析","authors":"Sayed Arsalan Sajjadi, H. Najafi, H. Aminikhah","doi":"10.1080/00207160.2023.2214643","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":"1 1","pages":"1794 - 1808"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a novel fractional product integration method for solving the second kind weakly singular Volterra integral equations with non-smooth solutions based on Jacobi polynomials\",\"authors\":\"Sayed Arsalan Sajjadi, H. Najafi, H. Aminikhah\",\"doi\":\"10.1080/00207160.2023.2214643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.\",\"PeriodicalId\":13911,\"journal\":{\"name\":\"International Journal of Computer Mathematics\",\"volume\":\"1 1\",\"pages\":\"1794 - 1808\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2214643\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2214643","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Convergence analysis of a novel fractional product integration method for solving the second kind weakly singular Volterra integral equations with non-smooth solutions based on Jacobi polynomials
In this paper, we introduce a new fractional basis function based on Lagrange polynomials. We define the new interpolation formula for approximation of the solutions of the second kind weakly singular Volterra integral equations. The product integration method is used for the numerical solution of these equations based on Jacobi polynomials. It is known that the weakly singular Volterra integral equations typically have solutions whose derivatives are unbounded at the left end-point of the interval of integration. We use the suitable transformations to overcome this non-smooth behaviour. An upper error bound of the proposed method is determined and the convergence analysis is discussed. Finally, some numerical examples with non-smooth solutions are prepared to test the efficiency and accuracy of the method.
期刊介绍:
International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering.
IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include:
• Numerical solutions of systems of partial differential equations
• Numerical solution of systems or of multi-dimensional partial differential equations
• Theory and computations of nonlocal modelling and fractional partial differential equations
• Novel multi-scale modelling and computational strategies
• Parallel computations
• Numerical optimization and controls
• Imaging algorithms and vision configurations
• Computational stochastic processes and inverse problems
• Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification
• Computational finance and applications
• Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine.
Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM.
Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work.
Papers developed from Conference Proceedings
Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.