{"title":"当p/n→0时,大四元数样本协方差矩阵和相关矩阵的ESD具有强收敛性","authors":"Xue Ding","doi":"10.1142/S2010326320500057","DOIUrl":null,"url":null,"abstract":"In this paper, we study the strong convergence of empirical spectral distribution (ESD) of the large quaternion sample covariance matrices and correlation matrices when the ratio of the population dimension [Formula: see text] to sample size [Formula: see text] tends to zero. We prove that the ESD of renormalized quaternion sample covariance matrices converges almost surely to the semicircle law.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong convergence of ESD for large quaternion sample covariance matrices and correlation matrices when p/n → 0\",\"authors\":\"Xue Ding\",\"doi\":\"10.1142/S2010326320500057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the strong convergence of empirical spectral distribution (ESD) of the large quaternion sample covariance matrices and correlation matrices when the ratio of the population dimension [Formula: see text] to sample size [Formula: see text] tends to zero. We prove that the ESD of renormalized quaternion sample covariance matrices converges almost surely to the semicircle law.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326320500057\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326320500057","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Strong convergence of ESD for large quaternion sample covariance matrices and correlation matrices when p/n → 0
In this paper, we study the strong convergence of empirical spectral distribution (ESD) of the large quaternion sample covariance matrices and correlation matrices when the ratio of the population dimension [Formula: see text] to sample size [Formula: see text] tends to zero. We prove that the ESD of renormalized quaternion sample covariance matrices converges almost surely to the semicircle law.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.