图的距离无符号拉普拉斯矩阵的扩展

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
S. Pirzada, Mohd Abrar, Ul Haq
{"title":"图的距离无符号拉普拉斯矩阵的扩展","authors":"S. Pirzada, Mohd Abrar, Ul Haq","doi":"10.2478/ausi-2023-0004","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a connected graph with n vertices, m edges. The distance signless Laplacian matrix DQ(G) is defined as DQ(G) = Diag(Tr(G)) + D(G), where Diag(Tr(G)) is the diagonal matrix of vertex transmissions and D(G) is the distance matrix of G. The distance signless Laplacian eigenvalues of G are the eigenvalues of DQ(G) and are denoted by δ1Q(G), δ2Q(G), ..., δnQ(G). δ1Q is called the distance signless Laplacian spectral radius of DQ(G). In this paper, we obtain upper and lower bounds for SDQ (G) in terms of the Wiener index, the transmission degree and the order of the graph.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"41 1","pages":"38 - 45"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the spread of the distance signless Laplacian matrix of a graph\",\"authors\":\"S. Pirzada, Mohd Abrar, Ul Haq\",\"doi\":\"10.2478/ausi-2023-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G be a connected graph with n vertices, m edges. The distance signless Laplacian matrix DQ(G) is defined as DQ(G) = Diag(Tr(G)) + D(G), where Diag(Tr(G)) is the diagonal matrix of vertex transmissions and D(G) is the distance matrix of G. The distance signless Laplacian eigenvalues of G are the eigenvalues of DQ(G) and are denoted by δ1Q(G), δ2Q(G), ..., δnQ(G). δ1Q is called the distance signless Laplacian spectral radius of DQ(G). In this paper, we obtain upper and lower bounds for SDQ (G) in terms of the Wiener index, the transmission degree and the order of the graph.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"41 1\",\"pages\":\"38 - 45\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个有n个顶点,m条边的连通图。距离无符号拉普拉斯矩阵DQ(G)定义为DQ(G) = Diag(Tr(G)) + D(G),其中Diag(Tr(G))是顶点传输的对角矩阵,D(G)是G的距离矩阵。G的距离无符号拉普拉斯特征值是DQ(G)的特征值,记为δ1Q(G), δ2Q(G),…δnQ (G)。δ1Q称为DQ(G)的距离无符号拉普拉斯谱半径。本文给出了SDQ (G)的Wiener指数、传输度和图阶的上界和下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spread of the distance signless Laplacian matrix of a graph
Abstract Let G be a connected graph with n vertices, m edges. The distance signless Laplacian matrix DQ(G) is defined as DQ(G) = Diag(Tr(G)) + D(G), where Diag(Tr(G)) is the diagonal matrix of vertex transmissions and D(G) is the distance matrix of G. The distance signless Laplacian eigenvalues of G are the eigenvalues of DQ(G) and are denoted by δ1Q(G), δ2Q(G), ..., δnQ(G). δ1Q is called the distance signless Laplacian spectral radius of DQ(G). In this paper, we obtain upper and lower bounds for SDQ (G) in terms of the Wiener index, the transmission degree and the order of the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信