没有注释段的语义分割

W. Xia, Csaba Domokos, Jian Dong, L. Cheong, Shuicheng Yan
{"title":"没有注释段的语义分割","authors":"W. Xia, Csaba Domokos, Jian Dong, L. Cheong, Shuicheng Yan","doi":"10.1109/ICCV.2013.271","DOIUrl":null,"url":null,"abstract":"Numerous existing object segmentation frameworks commonly utilize the object bounding box as a prior. In this paper, we address semantic segmentation assuming that object bounding boxes are provided by object detectors, but no training data with annotated segments are available. Based on a set of segment hypotheses, we introduce a simple voting scheme to estimate shape guidance for each bounding box. The derived shape guidance is used in the subsequent graph-cut-based figure-ground segmentation. The final segmentation result is obtained by merging the segmentation results in the bounding boxes. We conduct an extensive analysis of the effect of object bounding box accuracy. Comprehensive experiments on both the challenging PASCAL VOC object segmentation dataset and GrabCut-50 image segmentation dataset show that the proposed approach achieves competitive results compared to previous detection or bounding box prior based methods, as well as other state-of-the-art semantic segmentation methods.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"49 1","pages":"2176-2183"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Semantic Segmentation without Annotating Segments\",\"authors\":\"W. Xia, Csaba Domokos, Jian Dong, L. Cheong, Shuicheng Yan\",\"doi\":\"10.1109/ICCV.2013.271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous existing object segmentation frameworks commonly utilize the object bounding box as a prior. In this paper, we address semantic segmentation assuming that object bounding boxes are provided by object detectors, but no training data with annotated segments are available. Based on a set of segment hypotheses, we introduce a simple voting scheme to estimate shape guidance for each bounding box. The derived shape guidance is used in the subsequent graph-cut-based figure-ground segmentation. The final segmentation result is obtained by merging the segmentation results in the bounding boxes. We conduct an extensive analysis of the effect of object bounding box accuracy. Comprehensive experiments on both the challenging PASCAL VOC object segmentation dataset and GrabCut-50 image segmentation dataset show that the proposed approach achieves competitive results compared to previous detection or bounding box prior based methods, as well as other state-of-the-art semantic segmentation methods.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"49 1\",\"pages\":\"2176-2183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

许多现有的对象分割框架通常使用对象边界框作为先验。在本文中,我们假设对象检测器提供了对象边界框来解决语义分割问题,但没有带注释段的训练数据可用。基于一组分段假设,我们引入了一种简单的投票方案来估计每个边界框的形状引导。导出的形状制导用于随后的基于图形切割的图形-地面分割。将边界框内的分割结果合并得到最终的分割结果。我们对物体边界盒精度的影响进行了广泛的分析。在具有挑战性的PASCAL VOC对象分割数据集和GrabCut-50图像分割数据集上进行的综合实验表明,与之前基于检测或边界盒先验的方法以及其他最先进的语义分割方法相比,所提出的方法取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Segmentation without Annotating Segments
Numerous existing object segmentation frameworks commonly utilize the object bounding box as a prior. In this paper, we address semantic segmentation assuming that object bounding boxes are provided by object detectors, but no training data with annotated segments are available. Based on a set of segment hypotheses, we introduce a simple voting scheme to estimate shape guidance for each bounding box. The derived shape guidance is used in the subsequent graph-cut-based figure-ground segmentation. The final segmentation result is obtained by merging the segmentation results in the bounding boxes. We conduct an extensive analysis of the effect of object bounding box accuracy. Comprehensive experiments on both the challenging PASCAL VOC object segmentation dataset and GrabCut-50 image segmentation dataset show that the proposed approach achieves competitive results compared to previous detection or bounding box prior based methods, as well as other state-of-the-art semantic segmentation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信