学习者的语言

David I. Spivak
{"title":"学习者的语言","authors":"David I. Spivak","doi":"10.4204/EPTCS.372.2","DOIUrl":null,"url":null,"abstract":"In\"Backprop as functor\", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)$\\to$Learn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism Learn$\\cong$Para(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor $A\\mapsto Ay^A$. Using the fact that (Poly,$\\otimes$) is monoidal closed, we show that a map $A\\to B$ in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type $[Ay^A,By^B]$. Finally, we review the fact that the category p-Coalg of dynamical systems on any $p \\in$ Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":"37 1","pages":"14-28"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learners' languages\",\"authors\":\"David I. Spivak\",\"doi\":\"10.4204/EPTCS.372.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In\\\"Backprop as functor\\\", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)$\\\\to$Learn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism Learn$\\\\cong$Para(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor $A\\\\mapsto Ay^A$. Using the fact that (Poly,$\\\\otimes$) is monoidal closed, we show that a map $A\\\\to B$ in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type $[Ay^A,By^B]$. Finally, we review the fact that the category p-Coalg of dynamical systems on any $p \\\\in$ Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":\"37 1\",\"pages\":\"14-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.372.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.372.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在“Backprop as函子”中,作者表明深度学习的基本元素——梯度下降和反向传播——可以被概念化为一个强单函数子Para(Euc) $\to$从参数化欧几里德空间的范畴学习到学习者的范畴,一个明确开发的范畴捕捉参数更新和反向传播。很快就意识到有一个同构的Learn $\cong$ Para(Slens),其中Slens是函数式编程中使用的简单透镜的对称单面类别。在这个笔记中,我们观察到Slens是Poly的一个完整的子范畴,Poly是一个变量多项式函子的范畴,通过函子$A\mapsto Ay^A$。利用(Poly, $\otimes$)是单轴封闭的事实,我们证明了Para(Slens)中的映射$A\to B$在动力系统(更准确地说,是广义摩尔机)方面具有自然的解释,其接口是内homtype $[Ay^A,By^B]$。最后,我们回顾了在任意$p \in$ Poly上的动力系统的范畴p-Coalg形成一个拓扑的事实,并考虑了可以用其内部语言表述的逻辑命题。最后以梯度下降法为例,讨论了今后的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learners' languages
In"Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)$\to$Learn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism Learn$\cong$Para(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor $A\mapsto Ay^A$. Using the fact that (Poly,$\otimes$) is monoidal closed, we show that a map $A\to B$ in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type $[Ay^A,By^B]$. Finally, we review the fact that the category p-Coalg of dynamical systems on any $p \in$ Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信