类型化λ -演算中β -约简的Church-Rosser性质

H. Geuvers
{"title":"类型化λ -演算中β -约简的Church-Rosser性质","authors":"H. Geuvers","doi":"10.1109/LICS.1992.185556","DOIUrl":null,"url":null,"abstract":"The Church-Rosser property (CR) for pure type systems with beta eta -reduction is investigated. It is proved that CR (for beta eta ) on the well-typed terms of a fixed type holds, which is the maximum one can expect in view of Nederpelt's (1973) counterexample. The proof is given for a large class of pure type systems that contains, e.g., LF F, F omega , and the calculus of constructions.<<ETX>>","PeriodicalId":6412,"journal":{"name":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","volume":"49 1","pages":"453-460"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"The Church-Rosser property for beta eta -reduction in typed lambda -calculi\",\"authors\":\"H. Geuvers\",\"doi\":\"10.1109/LICS.1992.185556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Church-Rosser property (CR) for pure type systems with beta eta -reduction is investigated. It is proved that CR (for beta eta ) on the well-typed terms of a fixed type holds, which is the maximum one can expect in view of Nederpelt's (1973) counterexample. The proof is given for a large class of pure type systems that contains, e.g., LF F, F omega , and the calculus of constructions.<<ETX>>\",\"PeriodicalId\":6412,\"journal\":{\"name\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"49 1\",\"pages\":\"453-460\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1992.185556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1992.185556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

研究了具有-约简的纯型系统的Church-Rosser性质。根据Nederpelt(1973)的反例,证明了固定类型的良型项上的CR(对于β - eta)是成立的,这是人们可以期望的最大值。给出了一个大的纯类型系统的证明,它包含,例如,LF F, F,和构造演算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Church-Rosser property for beta eta -reduction in typed lambda -calculi
The Church-Rosser property (CR) for pure type systems with beta eta -reduction is investigated. It is proved that CR (for beta eta ) on the well-typed terms of a fixed type holds, which is the maximum one can expect in view of Nederpelt's (1973) counterexample. The proof is given for a large class of pure type systems that contains, e.g., LF F, F omega , and the calculus of constructions.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信