Marie Rieche, D. Arndt, Alexander Ihlow, F. Pérez-Fontán, G. del Galdo
{"title":"驱动方向对陆地移动卫星信道建模的影响","authors":"Marie Rieche, D. Arndt, Alexander Ihlow, F. Pérez-Fontán, G. del Galdo","doi":"10.1109/EUCAP.2014.6902266","DOIUrl":null,"url":null,"abstract":"State-of-the-art statistical Land Mobile Satellite (LMS) channel models, which are valuable for their low computational complexity, produce time series of the received signal envelope. Commonly, such models consider different types of environment and different elevation angles of the satellite. However, they do not consider the driving direction, i.e., the azimuthal angle of the satellite. In this contribution we investigate the impact of the driving direction by utilizing an existing statistical satellite channel model. Thereby, the model parameters are derived via an image-based approach applied on the output of a hemispheric camera mounted on a vehicle. The model output, presented in terms of first order statistics shows a significant impact on received satellite signal and should therefore be taken into account for future channel models.","PeriodicalId":22362,"journal":{"name":"The 8th European Conference on Antennas and Propagation (EuCAP 2014)","volume":"28 1","pages":"2268-2271"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Impact of driving direction on Land Mobile Satellite channel modeling\",\"authors\":\"Marie Rieche, D. Arndt, Alexander Ihlow, F. Pérez-Fontán, G. del Galdo\",\"doi\":\"10.1109/EUCAP.2014.6902266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art statistical Land Mobile Satellite (LMS) channel models, which are valuable for their low computational complexity, produce time series of the received signal envelope. Commonly, such models consider different types of environment and different elevation angles of the satellite. However, they do not consider the driving direction, i.e., the azimuthal angle of the satellite. In this contribution we investigate the impact of the driving direction by utilizing an existing statistical satellite channel model. Thereby, the model parameters are derived via an image-based approach applied on the output of a hemispheric camera mounted on a vehicle. The model output, presented in terms of first order statistics shows a significant impact on received satellite signal and should therefore be taken into account for future channel models.\",\"PeriodicalId\":22362,\"journal\":{\"name\":\"The 8th European Conference on Antennas and Propagation (EuCAP 2014)\",\"volume\":\"28 1\",\"pages\":\"2268-2271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th European Conference on Antennas and Propagation (EuCAP 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUCAP.2014.6902266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th European Conference on Antennas and Propagation (EuCAP 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUCAP.2014.6902266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of driving direction on Land Mobile Satellite channel modeling
State-of-the-art statistical Land Mobile Satellite (LMS) channel models, which are valuable for their low computational complexity, produce time series of the received signal envelope. Commonly, such models consider different types of environment and different elevation angles of the satellite. However, they do not consider the driving direction, i.e., the azimuthal angle of the satellite. In this contribution we investigate the impact of the driving direction by utilizing an existing statistical satellite channel model. Thereby, the model parameters are derived via an image-based approach applied on the output of a hemispheric camera mounted on a vehicle. The model output, presented in terms of first order statistics shows a significant impact on received satellite signal and should therefore be taken into account for future channel models.