通过旋转策略学习多个特征

J. Xia, L. Bombrun, Y. Berthoumieu, C. Germain
{"title":"通过旋转策略学习多个特征","authors":"J. Xia, L. Bombrun, Y. Berthoumieu, C. Germain","doi":"10.1109/ICIP.2016.7532750","DOIUrl":null,"url":null,"abstract":"Images are usually represented by different groups of features, such as color, shape and texture attributes. In this paper, we propose a classification approach that integrates multiple features, such as spectral and spatial information. We refer this approach to multiple feature learning via rotation (MFL-R) strategy, which adopt a rotation-based ensemble method by using a data transformation approach. Five data transformation methods, including principal component analysis (PCA), neighborhood preserving embedding (NPE), linear local tangent space alignment (LLTSA), linearity preserving projection (LPP) and multiple feature combination via manifold learning and patch alignment (MLPA) are used in the MFL-R framework. Experimental results over two hyperspectral remote sensing images demonstrate that MFL-R with MLPA gains better performances and is not sensitive to the tuning parameters.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"9 6 1","pages":"2206-2210"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple features learning via rotation strategy\",\"authors\":\"J. Xia, L. Bombrun, Y. Berthoumieu, C. Germain\",\"doi\":\"10.1109/ICIP.2016.7532750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images are usually represented by different groups of features, such as color, shape and texture attributes. In this paper, we propose a classification approach that integrates multiple features, such as spectral and spatial information. We refer this approach to multiple feature learning via rotation (MFL-R) strategy, which adopt a rotation-based ensemble method by using a data transformation approach. Five data transformation methods, including principal component analysis (PCA), neighborhood preserving embedding (NPE), linear local tangent space alignment (LLTSA), linearity preserving projection (LPP) and multiple feature combination via manifold learning and patch alignment (MLPA) are used in the MFL-R framework. Experimental results over two hyperspectral remote sensing images demonstrate that MFL-R with MLPA gains better performances and is not sensitive to the tuning parameters.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"9 6 1\",\"pages\":\"2206-2210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像通常由不同的特征组表示,例如颜色、形状和纹理属性。在本文中,我们提出了一种融合光谱和空间信息等多种特征的分类方法。我们将这种方法称为旋转多特征学习(MFL-R)策略,该策略采用基于旋转的集成方法,并使用数据转换方法。在MFL-R框架中,采用了主成分分析(PCA)、邻域保持嵌入(NPE)、线性局部切线空间对齐(LLTSA)、线性保持投影(LPP)和通过流形学习和斑块对齐(MLPA)的多特征组合等5种数据转换方法。在两幅高光谱遥感图像上的实验结果表明,采用MLPA的MFL-R获得了更好的性能,并且对调谐参数不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple features learning via rotation strategy
Images are usually represented by different groups of features, such as color, shape and texture attributes. In this paper, we propose a classification approach that integrates multiple features, such as spectral and spatial information. We refer this approach to multiple feature learning via rotation (MFL-R) strategy, which adopt a rotation-based ensemble method by using a data transformation approach. Five data transformation methods, including principal component analysis (PCA), neighborhood preserving embedding (NPE), linear local tangent space alignment (LLTSA), linearity preserving projection (LPP) and multiple feature combination via manifold learning and patch alignment (MLPA) are used in the MFL-R framework. Experimental results over two hyperspectral remote sensing images demonstrate that MFL-R with MLPA gains better performances and is not sensitive to the tuning parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信