基于深度学习和自然语言处理的稳健股票价格预测模型

Sidra Mehtab, Jaydip Sen
{"title":"基于深度学习和自然语言处理的稳健股票价格预测模型","authors":"Sidra Mehtab, Jaydip Sen","doi":"10.2139/ssrn.3502624","DOIUrl":null,"url":null,"abstract":"Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy remains the single most challenge in this area of research. We propose a hybrid approach for stock price movement prediction using machine learning, deep learning, and natural language processing. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, and collect its daily price movement over a period of three years (2015 – 2017). Based on the data of 2015 – 2017, we build various predictive models using machine learning, and then use those models to predict the closing value of NIFTY 50 for the period January 2018 till June 2019 with a prediction horizon of one week. For predicting the price movement patterns, we use a number of classification techniques, while for predicting the actual closing price of the stock, various regression models have been used. We also build a Long and Short-Term Memory (LSTM)-based deep learning network for predicting the closing price of the stocks and compare the prediction accuracies of the machine learning models with the LSTM model. We further augment the predictive model by integrating a sentiment analysis module on Twitter data to correlate the public sentiment of stock prices with the market sentiment. This has been done using Twitter sentiment and previous week closing values to predict stock price movement for the next week. We tested our proposed scheme using a cross validation method based on Self Organizing Fuzzy Neural Networks (SOFNN) and found extremely interesting results.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"142 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing\",\"authors\":\"Sidra Mehtab, Jaydip Sen\",\"doi\":\"10.2139/ssrn.3502624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy remains the single most challenge in this area of research. We propose a hybrid approach for stock price movement prediction using machine learning, deep learning, and natural language processing. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, and collect its daily price movement over a period of three years (2015 – 2017). Based on the data of 2015 – 2017, we build various predictive models using machine learning, and then use those models to predict the closing value of NIFTY 50 for the period January 2018 till June 2019 with a prediction horizon of one week. For predicting the price movement patterns, we use a number of classification techniques, while for predicting the actual closing price of the stock, various regression models have been used. We also build a Long and Short-Term Memory (LSTM)-based deep learning network for predicting the closing price of the stocks and compare the prediction accuracies of the machine learning models with the LSTM model. We further augment the predictive model by integrating a sentiment analysis module on Twitter data to correlate the public sentiment of stock prices with the market sentiment. This has been done using Twitter sentiment and previous week closing values to predict stock price movement for the next week. We tested our proposed scheme using a cross validation method based on Self Organizing Fuzzy Neural Networks (SOFNN) and found extremely interesting results.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3502624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3502624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

预测股票价格的未来走势一直是许多研究工作的主题。有一系列的股票价格技术分析的文献,其目的是确定股票价格运动的模式并从中获利。提高预测精度仍然是这一研究领域的最大挑战。我们提出了一种使用机器学习、深度学习和自然语言处理的混合方法来预测股票价格走势。我们选择印度国家证券交易所(NSE)的NIFTY 50指数值,并收集其在三年(2015 - 2017)期间的每日价格变动。基于2015 - 2017年的数据,我们利用机器学习建立了各种预测模型,然后利用这些模型预测2018年1月至2019年6月期间NIFTY 50的收盘价,预测范围为一周。为了预测价格运动模式,我们使用了许多分类技术,而为了预测股票的实际收盘价,我们使用了各种回归模型。我们还建立了一个基于长短期记忆(LSTM)的深度学习网络来预测股票的收盘价,并比较了机器学习模型与LSTM模型的预测精度。我们通过在Twitter数据上集成情绪分析模块来进一步增强预测模型,将公众对股票价格的情绪与市场情绪联系起来。这是通过使用Twitter情绪和前一周的收盘价来预测下周的股价走势。我们使用基于自组织模糊神经网络(SOFNN)的交叉验证方法测试了我们提出的方案,并发现了非常有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing
Prediction of future movement of stock prices has been a subject matter of many research work. There is a gamut of literature of technical analysis of stock prices where the objective is to identify patterns in stock price movements and derive profit from it. Improving the prediction accuracy remains the single most challenge in this area of research. We propose a hybrid approach for stock price movement prediction using machine learning, deep learning, and natural language processing. We select the NIFTY 50 index values of the National Stock Exchange (NSE) of India, and collect its daily price movement over a period of three years (2015 – 2017). Based on the data of 2015 – 2017, we build various predictive models using machine learning, and then use those models to predict the closing value of NIFTY 50 for the period January 2018 till June 2019 with a prediction horizon of one week. For predicting the price movement patterns, we use a number of classification techniques, while for predicting the actual closing price of the stock, various regression models have been used. We also build a Long and Short-Term Memory (LSTM)-based deep learning network for predicting the closing price of the stocks and compare the prediction accuracies of the machine learning models with the LSTM model. We further augment the predictive model by integrating a sentiment analysis module on Twitter data to correlate the public sentiment of stock prices with the market sentiment. This has been done using Twitter sentiment and previous week closing values to predict stock price movement for the next week. We tested our proposed scheme using a cross validation method based on Self Organizing Fuzzy Neural Networks (SOFNN) and found extremely interesting results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信