利用分数和积分多项式逼近光伏组件模型

E. Ortiz-Rivera
{"title":"利用分数和积分多项式逼近光伏组件模型","authors":"E. Ortiz-Rivera","doi":"10.1109/PVSC.2012.6318199","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method is presented using fractional polynomials to approximate the performance for a PVM where the shape, boundary conditions and performance of the physical system are satisfied. The use of fractional polynomials will provide an analytical solution to determine the optimal voltage, Vop, optimal current, Iop, and maximum power, Pmax for the PVM operation. Also, this paper proposes a second method to approximate a fractional polynomial by a sufficiently close integer polynomial. Several examples are shown and verified using the manufacturer data sheets of different PVM's. Finally, the proposed methods are excellent to approximate the PVM's I-V Curves and provide a different way to approximate analytically the PVM's optimal voltage to produce the PVM's maximum power that it is not possible to solve using differential calculus.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"1 1","pages":"002927-002931"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Approximation of a photovoltaic module model using fractional and integral polynomials\",\"authors\":\"E. Ortiz-Rivera\",\"doi\":\"10.1109/PVSC.2012.6318199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel method is presented using fractional polynomials to approximate the performance for a PVM where the shape, boundary conditions and performance of the physical system are satisfied. The use of fractional polynomials will provide an analytical solution to determine the optimal voltage, Vop, optimal current, Iop, and maximum power, Pmax for the PVM operation. Also, this paper proposes a second method to approximate a fractional polynomial by a sufficiently close integer polynomial. Several examples are shown and verified using the manufacturer data sheets of different PVM's. Finally, the proposed methods are excellent to approximate the PVM's I-V Curves and provide a different way to approximate analytically the PVM's optimal voltage to produce the PVM's maximum power that it is not possible to solve using differential calculus.\",\"PeriodicalId\":6318,\"journal\":{\"name\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"volume\":\"1 1\",\"pages\":\"002927-002931\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2012.6318199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6318199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在满足物理系统的形状、边界条件和性能的情况下,提出了一种利用分数阶多项式近似PVM性能的新方法。分数阶多项式的使用将提供一个解析解来确定PVM操作的最佳电压,Vop,最佳电流,Iop和最大功率,Pmax。此外,本文还提出了用一个足够接近的整数多项式逼近分数阶多项式的第二种方法。使用不同PVM的制造商数据表显示并验证了几个示例。最后,所提出的方法非常适合于近似PVM的I-V曲线,并提供了一种不同的方法来解析近似PVM的最佳电压,以产生PVM的最大功率,这是不可能用微分法求解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of a photovoltaic module model using fractional and integral polynomials
In this paper, a novel method is presented using fractional polynomials to approximate the performance for a PVM where the shape, boundary conditions and performance of the physical system are satisfied. The use of fractional polynomials will provide an analytical solution to determine the optimal voltage, Vop, optimal current, Iop, and maximum power, Pmax for the PVM operation. Also, this paper proposes a second method to approximate a fractional polynomial by a sufficiently close integer polynomial. Several examples are shown and verified using the manufacturer data sheets of different PVM's. Finally, the proposed methods are excellent to approximate the PVM's I-V Curves and provide a different way to approximate analytically the PVM's optimal voltage to produce the PVM's maximum power that it is not possible to solve using differential calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信