分裂图和单环图的局部度量维数

Dinny Fitriani, Anisa Rarasati, S. Saputro, E. Baskoro
{"title":"分裂图和单环图的局部度量维数","authors":"Dinny Fitriani, Anisa Rarasati, S. Saputro, E. Baskoro","doi":"10.19184/ijc.2022.6.1.3","DOIUrl":null,"url":null,"abstract":"A set <em>W</em> is called a local resolving set of <em>G</em> if the distance of <em>u</em> and <em>v</em> to some elements of <em>W</em> are distinct for every two adjacent vertices <em>u</em> and <em>v</em> in <em>G</em>.  The local metric dimension of <em>G</em> is the minimum cardinality of a local resolving set of <em>G</em>.  A connected graph <em>G</em> is called a split graph if <em>V</em>(<em>G</em>) can be partitioned into two subsets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> where an induced subgraph of G by <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> is a complete graph and an independent set, respectively.  We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle.  In this paper, we provide a general sharp bounds of local metric dimension of split graph.  We also determine an exact value of local metric dimension of any unicyclic graphs.","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The local metric dimension of split and unicyclic graphs\",\"authors\":\"Dinny Fitriani, Anisa Rarasati, S. Saputro, E. Baskoro\",\"doi\":\"10.19184/ijc.2022.6.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set <em>W</em> is called a local resolving set of <em>G</em> if the distance of <em>u</em> and <em>v</em> to some elements of <em>W</em> are distinct for every two adjacent vertices <em>u</em> and <em>v</em> in <em>G</em>.  The local metric dimension of <em>G</em> is the minimum cardinality of a local resolving set of <em>G</em>.  A connected graph <em>G</em> is called a split graph if <em>V</em>(<em>G</em>) can be partitioned into two subsets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> where an induced subgraph of G by <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> is a complete graph and an independent set, respectively.  We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle.  In this paper, we provide a general sharp bounds of local metric dimension of split graph.  We also determine an exact value of local metric dimension of any unicyclic graphs.\",\"PeriodicalId\":13506,\"journal\":{\"name\":\"Indonesian Journal of Combinatorics\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19184/ijc.2022.6.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/ijc.2022.6.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

W是一组称为本地解决组G如果u和v的距离的一些元素W是不同的每两个相邻顶点u和v·G·G的本地度量维度的最低基数是当地解决组G .连通图G称为分裂图如果v (G)可以分割成两个子集V1和V2 V1和V2的诱导子图G是一个完整的图形和一个独立的组,分别。我们还考虑一个图,即单环图,它是一个只包含一个环的连通图。本文给出了分裂图局部度量维的一般锐界。我们还确定了任意单环图的局部度量维数的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The local metric dimension of split and unicyclic graphs
A set W is called a local resolving set of G if the distance of u and v to some elements of W are distinct for every two adjacent vertices u and v in G.  The local metric dimension of G is the minimum cardinality of a local resolving set of G.  A connected graph G is called a split graph if V(G) can be partitioned into two subsets V1 and V2 where an induced subgraph of G by V1 and V2 is a complete graph and an independent set, respectively.  We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle.  In this paper, we provide a general sharp bounds of local metric dimension of split graph.  We also determine an exact value of local metric dimension of any unicyclic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信