Amit Kumar Yadav, Neeraj Gupta, Aamir Khan, A. S. Jalal
{"title":"基于局部通用特征的局部遮挡下人脸鲁棒识别","authors":"Amit Kumar Yadav, Neeraj Gupta, Aamir Khan, A. S. Jalal","doi":"10.4018/IJCINI.20210701.OA4","DOIUrl":null,"url":null,"abstract":"Face recognition has drawn significant attention due to its potential use in biometric authentication, surveillance, security, robotics, and so on. It is a challenging task in the field of computer vision. Although the various state-of-the-art methods of face recognition in constrained environments have achieved satisfactory results, there are still many issues which are untouched in unconstrained environments, such as partial occlusions, large pose variations, etc. In this paper, the authors have proposed an approach which utilized the local generic feature (LGF) to recognize the face in the partial occlusion by fusing features scale invariant feature transform (SIFT) and multi-block local binary pattern (MB-LBP). It also utilizes robust kernel method for classification of the query image. They have validated the effectiveness of the proposed approach on the benchmark AR face database. The experimental outcomes illustrate that the proposed approach outperformed the state-of-art methods for robust face recognition.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"26 1","pages":"47-57"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Robust Face Recognition Under Partial Occlusion Based on Local Generic Features\",\"authors\":\"Amit Kumar Yadav, Neeraj Gupta, Aamir Khan, A. S. Jalal\",\"doi\":\"10.4018/IJCINI.20210701.OA4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition has drawn significant attention due to its potential use in biometric authentication, surveillance, security, robotics, and so on. It is a challenging task in the field of computer vision. Although the various state-of-the-art methods of face recognition in constrained environments have achieved satisfactory results, there are still many issues which are untouched in unconstrained environments, such as partial occlusions, large pose variations, etc. In this paper, the authors have proposed an approach which utilized the local generic feature (LGF) to recognize the face in the partial occlusion by fusing features scale invariant feature transform (SIFT) and multi-block local binary pattern (MB-LBP). It also utilizes robust kernel method for classification of the query image. They have validated the effectiveness of the proposed approach on the benchmark AR face database. The experimental outcomes illustrate that the proposed approach outperformed the state-of-art methods for robust face recognition.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"26 1\",\"pages\":\"47-57\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCINI.20210701.OA4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.20210701.OA4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Robust Face Recognition Under Partial Occlusion Based on Local Generic Features
Face recognition has drawn significant attention due to its potential use in biometric authentication, surveillance, security, robotics, and so on. It is a challenging task in the field of computer vision. Although the various state-of-the-art methods of face recognition in constrained environments have achieved satisfactory results, there are still many issues which are untouched in unconstrained environments, such as partial occlusions, large pose variations, etc. In this paper, the authors have proposed an approach which utilized the local generic feature (LGF) to recognize the face in the partial occlusion by fusing features scale invariant feature transform (SIFT) and multi-block local binary pattern (MB-LBP). It also utilizes robust kernel method for classification of the query image. They have validated the effectiveness of the proposed approach on the benchmark AR face database. The experimental outcomes illustrate that the proposed approach outperformed the state-of-art methods for robust face recognition.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.