Yuanqiu Luo, Liang Zhang, N. Ansari, Bo Gao, Xiang Liu, F. Effenberger
{"title":"100gb /s下一代无源光网络的波长通道绑定","authors":"Yuanqiu Luo, Liang Zhang, N. Ansari, Bo Gao, Xiang Liu, F. Effenberger","doi":"10.1109/WOCC.2017.7928976","DOIUrl":null,"url":null,"abstract":"Wavelength channel bonding coordinates multiple physical interfaces for data transmission between the Passive Optical Network (PON) central office and user side equipments. It provides a high speed logical channel to the user services, and the logical channel capacity is the sum of the rates of the bonded wavelength channels. Wavelength channel bonding gains strong support from operators in designing the next generation PONs. In this paper, we propose a channel bonding system structure for 100 Gb/s PON and depict the problem by using integer linear programming (ILP) formulation. Two heuristic algorithms are further proposed to control the bonded traffic transmission in the case of light and heavy traffic load. The algorithms schedule forward error correction (FEC) codeword (CW) transmission among four 25 Gb/s wavelength channels. Simulations have validated the performance of these algorithms, demonstrating that one algorithm provides salient control on delay, and the other increases bandwidth efficiency via threshold management.","PeriodicalId":6471,"journal":{"name":"2017 26th Wireless and Optical Communication Conference (WOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wavelength channel bonding for 100 Gb/s next generation Passive Optical Networks\",\"authors\":\"Yuanqiu Luo, Liang Zhang, N. Ansari, Bo Gao, Xiang Liu, F. Effenberger\",\"doi\":\"10.1109/WOCC.2017.7928976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelength channel bonding coordinates multiple physical interfaces for data transmission between the Passive Optical Network (PON) central office and user side equipments. It provides a high speed logical channel to the user services, and the logical channel capacity is the sum of the rates of the bonded wavelength channels. Wavelength channel bonding gains strong support from operators in designing the next generation PONs. In this paper, we propose a channel bonding system structure for 100 Gb/s PON and depict the problem by using integer linear programming (ILP) formulation. Two heuristic algorithms are further proposed to control the bonded traffic transmission in the case of light and heavy traffic load. The algorithms schedule forward error correction (FEC) codeword (CW) transmission among four 25 Gb/s wavelength channels. Simulations have validated the performance of these algorithms, demonstrating that one algorithm provides salient control on delay, and the other increases bandwidth efficiency via threshold management.\",\"PeriodicalId\":6471,\"journal\":{\"name\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th Wireless and Optical Communication Conference (WOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2017.7928976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th Wireless and Optical Communication Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2017.7928976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wavelength channel bonding for 100 Gb/s next generation Passive Optical Networks
Wavelength channel bonding coordinates multiple physical interfaces for data transmission between the Passive Optical Network (PON) central office and user side equipments. It provides a high speed logical channel to the user services, and the logical channel capacity is the sum of the rates of the bonded wavelength channels. Wavelength channel bonding gains strong support from operators in designing the next generation PONs. In this paper, we propose a channel bonding system structure for 100 Gb/s PON and depict the problem by using integer linear programming (ILP) formulation. Two heuristic algorithms are further proposed to control the bonded traffic transmission in the case of light and heavy traffic load. The algorithms schedule forward error correction (FEC) codeword (CW) transmission among four 25 Gb/s wavelength channels. Simulations have validated the performance of these algorithms, demonstrating that one algorithm provides salient control on delay, and the other increases bandwidth efficiency via threshold management.