{"title":"一阶常微分方程组数值方法的比较","authors":"Jemal Demsie Abraha","doi":"10.11648/J.PAMJ.20200902.11","DOIUrl":null,"url":null,"abstract":"In this paper three numerical methods are discussed to find the approximate solutions of a systems of first order ordinary differential equations. Those are Classical Runge-Kutta method, Modified Euler method and Euler method. For each methods formulas are developed for n systems of ordinary differential equations. The formulas explained by these methods are demonstrated by examples to identify the most accurate numerical methods. By comparing the analytical solution of the dependent variables with the approximate solution, absolute errors are calculated. The resulting value indicates that classical fourth order Runge-Kutta method offers most closet values with the computed analytical values. Finally from the results the classical fourth order is more efficient method to find the approximate solutions of the systems of ordinary differential equations.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"57 1","pages":"32"},"PeriodicalIF":0.2000,"publicationDate":"2020-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Numerical Methods for System of First Order Ordinary Differential Equations\",\"authors\":\"Jemal Demsie Abraha\",\"doi\":\"10.11648/J.PAMJ.20200902.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper three numerical methods are discussed to find the approximate solutions of a systems of first order ordinary differential equations. Those are Classical Runge-Kutta method, Modified Euler method and Euler method. For each methods formulas are developed for n systems of ordinary differential equations. The formulas explained by these methods are demonstrated by examples to identify the most accurate numerical methods. By comparing the analytical solution of the dependent variables with the approximate solution, absolute errors are calculated. The resulting value indicates that classical fourth order Runge-Kutta method offers most closet values with the computed analytical values. Finally from the results the classical fourth order is more efficient method to find the approximate solutions of the systems of ordinary differential equations.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":\"57 1\",\"pages\":\"32\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20200902.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20200902.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Comparison of Numerical Methods for System of First Order Ordinary Differential Equations
In this paper three numerical methods are discussed to find the approximate solutions of a systems of first order ordinary differential equations. Those are Classical Runge-Kutta method, Modified Euler method and Euler method. For each methods formulas are developed for n systems of ordinary differential equations. The formulas explained by these methods are demonstrated by examples to identify the most accurate numerical methods. By comparing the analytical solution of the dependent variables with the approximate solution, absolute errors are calculated. The resulting value indicates that classical fourth order Runge-Kutta method offers most closet values with the computed analytical values. Finally from the results the classical fourth order is more efficient method to find the approximate solutions of the systems of ordinary differential equations.
期刊介绍:
The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.