{"title":"纳米材料毒性评估的新方法和认知","authors":"L. S.","doi":"10.23880/beba-16000168","DOIUrl":null,"url":null,"abstract":"In the 21st century, nanotechnology, an interdisciplinary research has become an innovative field and made a new revolution in science and technology. Its unique properties has led an extensive research interest among the researchers and utilized in various fields including biomedical applications. Increased use of nanomaterials in health sciences and medicine aroused a global concern on the biological response, effectiveness, and toxicity of these materials. Therefore, it has become imperative in studying the toxicity of nanomaterial (Nanotoxicology) in therapeutic applications. The main aim of nanotoxicological studies is to determine the toxic/hazardous effects of nanomaterials on humans and to the environment. The toxicity of the nanomaterials depends on various physicochemical properties such as size, shape, surface area, surface chemistry, concentration and several others parameters. Nanomaterials have shown higher toxicity particularly in inhalation studies, hence stringent regulations are made for nanotechnology products to ensure the safety of the products. There are few approaches to overcome these toxicities and improve its therapeutic efficacy and safety. Hence development of nanotechnology should occur on par with risk assessment to identify and subsequently avoid possible dangers in the near future. This article highlights on the different nanomaterials, their unique properties and frameworks for assessing the toxicity of nanomaterials.","PeriodicalId":8995,"journal":{"name":"Bioequivalence & Bioavailability International Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Emerging Approaches and Perception of Toxicity Assessment in Nanomaterials\",\"authors\":\"L. S.\",\"doi\":\"10.23880/beba-16000168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 21st century, nanotechnology, an interdisciplinary research has become an innovative field and made a new revolution in science and technology. Its unique properties has led an extensive research interest among the researchers and utilized in various fields including biomedical applications. Increased use of nanomaterials in health sciences and medicine aroused a global concern on the biological response, effectiveness, and toxicity of these materials. Therefore, it has become imperative in studying the toxicity of nanomaterial (Nanotoxicology) in therapeutic applications. The main aim of nanotoxicological studies is to determine the toxic/hazardous effects of nanomaterials on humans and to the environment. The toxicity of the nanomaterials depends on various physicochemical properties such as size, shape, surface area, surface chemistry, concentration and several others parameters. Nanomaterials have shown higher toxicity particularly in inhalation studies, hence stringent regulations are made for nanotechnology products to ensure the safety of the products. There are few approaches to overcome these toxicities and improve its therapeutic efficacy and safety. Hence development of nanotechnology should occur on par with risk assessment to identify and subsequently avoid possible dangers in the near future. This article highlights on the different nanomaterials, their unique properties and frameworks for assessing the toxicity of nanomaterials.\",\"PeriodicalId\":8995,\"journal\":{\"name\":\"Bioequivalence & Bioavailability International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioequivalence & Bioavailability International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23880/beba-16000168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioequivalence & Bioavailability International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23880/beba-16000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emerging Approaches and Perception of Toxicity Assessment in Nanomaterials
In the 21st century, nanotechnology, an interdisciplinary research has become an innovative field and made a new revolution in science and technology. Its unique properties has led an extensive research interest among the researchers and utilized in various fields including biomedical applications. Increased use of nanomaterials in health sciences and medicine aroused a global concern on the biological response, effectiveness, and toxicity of these materials. Therefore, it has become imperative in studying the toxicity of nanomaterial (Nanotoxicology) in therapeutic applications. The main aim of nanotoxicological studies is to determine the toxic/hazardous effects of nanomaterials on humans and to the environment. The toxicity of the nanomaterials depends on various physicochemical properties such as size, shape, surface area, surface chemistry, concentration and several others parameters. Nanomaterials have shown higher toxicity particularly in inhalation studies, hence stringent regulations are made for nanotechnology products to ensure the safety of the products. There are few approaches to overcome these toxicities and improve its therapeutic efficacy and safety. Hence development of nanotechnology should occur on par with risk assessment to identify and subsequently avoid possible dangers in the near future. This article highlights on the different nanomaterials, their unique properties and frameworks for assessing the toxicity of nanomaterials.