Radin扩展中的紧凑性和猜测原则

IF 0.9 1区 数学 Q1 LOGIC
Omer Ben-Neria, Jing Zhang
{"title":"Radin扩展中的紧凑性和猜测原则","authors":"Omer Ben-Neria, Jing Zhang","doi":"10.1142/s0219061322500246","DOIUrl":null,"url":null,"abstract":"We investigate the interaction between compactness principles and guessing principles in the Radin forcing extensions. In particular, we show that in any Radin forcing extension with respect to a measure sequence on $\\kappa$, if $\\kappa$ is weakly compact, then $\\diamondsuit(\\kappa)$ holds. This provides contrast with a well-known theorem of Woodin, who showed that in a certain Radin extension over a suitably prepared ground model relative to the existence of large cardinals, the diamond principle fails at a strongly inaccessible Mahlo cardinal. Refining the analysis of the Radin extensions, we consistently demonstrate a scenario where a compactness principle, stronger than the diagonal stationary reflection principle, holds yet the diamond principle fails at a strongly inaccessible cardinal, improving a result from \\cite{BN19}.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":"26 1","pages":"2250024:1-2250024:22"},"PeriodicalIF":0.9000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compactness and guessing principles in the Radin extensions\",\"authors\":\"Omer Ben-Neria, Jing Zhang\",\"doi\":\"10.1142/s0219061322500246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the interaction between compactness principles and guessing principles in the Radin forcing extensions. In particular, we show that in any Radin forcing extension with respect to a measure sequence on $\\\\kappa$, if $\\\\kappa$ is weakly compact, then $\\\\diamondsuit(\\\\kappa)$ holds. This provides contrast with a well-known theorem of Woodin, who showed that in a certain Radin extension over a suitably prepared ground model relative to the existence of large cardinals, the diamond principle fails at a strongly inaccessible Mahlo cardinal. Refining the analysis of the Radin extensions, we consistently demonstrate a scenario where a compactness principle, stronger than the diagonal stationary reflection principle, holds yet the diamond principle fails at a strongly inaccessible cardinal, improving a result from \\\\cite{BN19}.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\"26 1\",\"pages\":\"2250024:1-2250024:22\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061322500246\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061322500246","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 4

摘要

研究了Radin强迫扩展中紧致原理和猜测原理之间的相互作用。特别地,我们证明了对于$\kappa$上的一个测度序列的任意Radin强迫扩展,如果$\kappa$是弱紧的,则$\diamondsuit(\kappa)$成立。这与Woodin的一个著名定理形成了对比,Woodin表明,在适当准备的地面模型上,相对于大基数的存在,在一定的Radin扩展中,菱形原理在强不可达的Mahlo基数处失效。通过改进Radin扩展的分析,我们一致地证明了一种场景,即紧致原理比对角固定反射原理更强,但钻石原理在强不可达基数处失败,从而改进了\cite{BN19}的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness and guessing principles in the Radin extensions
We investigate the interaction between compactness principles and guessing principles in the Radin forcing extensions. In particular, we show that in any Radin forcing extension with respect to a measure sequence on $\kappa$, if $\kappa$ is weakly compact, then $\diamondsuit(\kappa)$ holds. This provides contrast with a well-known theorem of Woodin, who showed that in a certain Radin extension over a suitably prepared ground model relative to the existence of large cardinals, the diamond principle fails at a strongly inaccessible Mahlo cardinal. Refining the analysis of the Radin extensions, we consistently demonstrate a scenario where a compactness principle, stronger than the diagonal stationary reflection principle, holds yet the diamond principle fails at a strongly inaccessible cardinal, improving a result from \cite{BN19}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信