用于元数据提取的众包网络知识

Zhaohui Wu, W. Huang, Chen Liang, C. Lee Giles
{"title":"用于元数据提取的众包网络知识","authors":"Zhaohui Wu, W. Huang, Chen Liang, C. Lee Giles","doi":"10.1109/JCDL.2014.6970160","DOIUrl":null,"url":null,"abstract":"We explore a new metadata extraction framework without human annotators with the ground truth harvested from Web. A new training sample is selected based on not only the uncertainty and representativeness in the unlabeled pool, but also on its availability and credibility in Web knowledge bases. We construct a dataset of 4329 books with valid metadata and evaluate our approach using 5 Web book databases as oracles. Empirical results demonstrate its effectiveness and efficiency.","PeriodicalId":92278,"journal":{"name":"Proceedings of the ... ACM/IEEE Joint Conference on Digital Libraries. ACM/IEEE Joint Conference on Digital Libraries","volume":"135 1","pages":"141-144"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Crowd-sourcing Web knowledge for metadata extraction\",\"authors\":\"Zhaohui Wu, W. Huang, Chen Liang, C. Lee Giles\",\"doi\":\"10.1109/JCDL.2014.6970160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore a new metadata extraction framework without human annotators with the ground truth harvested from Web. A new training sample is selected based on not only the uncertainty and representativeness in the unlabeled pool, but also on its availability and credibility in Web knowledge bases. We construct a dataset of 4329 books with valid metadata and evaluate our approach using 5 Web book databases as oracles. Empirical results demonstrate its effectiveness and efficiency.\",\"PeriodicalId\":92278,\"journal\":{\"name\":\"Proceedings of the ... ACM/IEEE Joint Conference on Digital Libraries. ACM/IEEE Joint Conference on Digital Libraries\",\"volume\":\"135 1\",\"pages\":\"141-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM/IEEE Joint Conference on Digital Libraries. ACM/IEEE Joint Conference on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL.2014.6970160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM/IEEE Joint Conference on Digital Libraries. ACM/IEEE Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL.2014.6970160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们探索了一种新的元数据提取框架,无需人工注释器,使用从Web获取的基础事实。新的训练样本的选择不仅要考虑未标记池的不确定性和代表性,还要考虑其在Web知识库中的可用性和可信度。我们使用有效的元数据构建了4329本书的数据集,并使用5个Web图书数据库作为oracle来评估我们的方法。实证结果证明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crowd-sourcing Web knowledge for metadata extraction
We explore a new metadata extraction framework without human annotators with the ground truth harvested from Web. A new training sample is selected based on not only the uncertainty and representativeness in the unlabeled pool, but also on its availability and credibility in Web knowledge bases. We construct a dataset of 4329 books with valid metadata and evaluate our approach using 5 Web book databases as oracles. Empirical results demonstrate its effectiveness and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信