E. Toropov, A. Tumasov, A. Vashurin, D. Butin, E. Stepanov
{"title":"汽车电子稳定控制系统硬件在环试验研究","authors":"E. Toropov, A. Tumasov, A. Vashurin, D. Butin, E. Stepanov","doi":"10.18485/aeletters.2023.8.2.4","DOIUrl":null,"url":null,"abstract":": Conducting laboratory and field testing is a classic approach to the development and certification of vehicles and their automotive components. These processes are costly and time-consuming. The serial installation of mechatronic systems in the car forced software and electronic systems engineers to master a new approach to testing and development - \"physical\" simulation (Hardware-in-the-loop). The aim of the research in this article is to develop, implement and validate a “physical” simulation method for evaluating the performance of Electronic Stability Control (ESC) systems. In this research, an ESC HIL-testbench, a mathematical model of the vehicle curvilinear movement in Adams Car, and a method for converting it into a Simulink-model, that allows generating a C-code, were developed and implemented. To assess the adequacy and correctness of the “physical” simulation, full -scale dynamic manoeuvres were carried out on the object of research - the Gazelle Next vehicle with ESC-system “ Bosch ESP 9.1 ” . In this article, the results of road tests and simulations, as well as an assessment of their convergence, are presented in tabular and graphical forms. The maximum discrepancy was 19% with the maximum allowable one up to 25% in accordance with the standard ISO 19635.","PeriodicalId":53430,"journal":{"name":"Applied Engineering Letters","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hardware-in-the-Loop Testing of Vehicle’s Electronic Stability Control System\",\"authors\":\"E. Toropov, A. Tumasov, A. Vashurin, D. Butin, E. Stepanov\",\"doi\":\"10.18485/aeletters.2023.8.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Conducting laboratory and field testing is a classic approach to the development and certification of vehicles and their automotive components. These processes are costly and time-consuming. The serial installation of mechatronic systems in the car forced software and electronic systems engineers to master a new approach to testing and development - \\\"physical\\\" simulation (Hardware-in-the-loop). The aim of the research in this article is to develop, implement and validate a “physical” simulation method for evaluating the performance of Electronic Stability Control (ESC) systems. In this research, an ESC HIL-testbench, a mathematical model of the vehicle curvilinear movement in Adams Car, and a method for converting it into a Simulink-model, that allows generating a C-code, were developed and implemented. To assess the adequacy and correctness of the “physical” simulation, full -scale dynamic manoeuvres were carried out on the object of research - the Gazelle Next vehicle with ESC-system “ Bosch ESP 9.1 ” . In this article, the results of road tests and simulations, as well as an assessment of their convergence, are presented in tabular and graphical forms. The maximum discrepancy was 19% with the maximum allowable one up to 25% in accordance with the standard ISO 19635.\",\"PeriodicalId\":53430,\"journal\":{\"name\":\"Applied Engineering Letters\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Engineering Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18485/aeletters.2023.8.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Engineering Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18485/aeletters.2023.8.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Hardware-in-the-Loop Testing of Vehicle’s Electronic Stability Control System
: Conducting laboratory and field testing is a classic approach to the development and certification of vehicles and their automotive components. These processes are costly and time-consuming. The serial installation of mechatronic systems in the car forced software and electronic systems engineers to master a new approach to testing and development - "physical" simulation (Hardware-in-the-loop). The aim of the research in this article is to develop, implement and validate a “physical” simulation method for evaluating the performance of Electronic Stability Control (ESC) systems. In this research, an ESC HIL-testbench, a mathematical model of the vehicle curvilinear movement in Adams Car, and a method for converting it into a Simulink-model, that allows generating a C-code, were developed and implemented. To assess the adequacy and correctness of the “physical” simulation, full -scale dynamic manoeuvres were carried out on the object of research - the Gazelle Next vehicle with ESC-system “ Bosch ESP 9.1 ” . In this article, the results of road tests and simulations, as well as an assessment of their convergence, are presented in tabular and graphical forms. The maximum discrepancy was 19% with the maximum allowable one up to 25% in accordance with the standard ISO 19635.